-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_parameters_optimization.py
29 lines (29 loc) · 1.2 KB
/
run_parameters_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# from Hybrid import HybridRecommender
#
# dataReader = NetflixEnhancedReader()
# URM_train = dataReader.get_URM_train()
# URM_test = dataReader.get_URM_test()
#
# logFile = open("BPR_MF_GridSearch.txt", "a")
#
#
# gridSearch = GridSearch(MF_BPR_Cython, None, URM_test, None)
#
#
# hyperparamethers_range_dictionary = {}
# hyperparamethers_range_dictionary["num_factors"] = list(range(1, 51, 5))
# hyperparamethers_range_dictionary["epochs"] = list(range(1, 51, 10))
# hyperparamethers_range_dictionary["batch_size"] = list(range(1, 101, 50))
# hyperparamethers_range_dictionary["learning_rate"] = [1e-1, 1e-2, 1e-3, 1e-4]
#
#
#
# recommenderDictionary = {DictionaryKeys.CONSTRUCTOR_POSITIONAL_ARGS: [URM_train],
# DictionaryKeys.CONSTRUCTOR_KEYWORD_ARGS: dict(),
# DictionaryKeys.FIT_POSITIONAL_ARGS: dict(),
# DictionaryKeys.FIT_KEYWORD_ARGS: dict(),
# DictionaryKeys.FIT_RANGE_KEYWORD_ARGS: hyperparamethers_range_dictionary}
#
# best_paramethers = gridSearch.search(recommenderDictionary, logFile = logFile)
#
# print(best_paramethers)