-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathafc_process.c
194 lines (188 loc) · 5.48 KB
/
afc_process.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// afc_process.c - adaptive-feedback-cancelation processing functions
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "chapro.h"
/***********************************************************/
FUNC(void)
cha_afc_input(CHA_PTR cp, float *x, float *y, int cs)
{
float ye, yy, mmu, dif, dm, xx, ee, uu, ef, uf, cfc, sum, pwr;
int i, ih, ij, is, id, j, jp1, k, nfc, puc, iqm = 0;
static float *rng0, *rng1, *rng2, *rng3;
static float *efbp, *sfbp, *wfrp, *ffrp, *qm;
static float mu, rho, eps, alf, fbm;
static int rhd, rsz, mask, afl, wfl, pfl, fbl, nqm, hdel, pup, *iqmp;
if (CHA_IVAR[_mxl] == 0) { // if no AFC, do nothing
return;
}
if (CHA_IVAR[_in1] == 0) {
iqmp = (int *) cp[_iqmp];
qm = (float *) cp[_qm];
efbp = (float *) cp[_efbp];
sfbp = (float *) cp[_sfbp];
wfrp = (float *) cp[_wfrp];
ffrp = (float *) cp[_ffrp];
rng0 = (float *) cp[_rng0];
rng3 = (float *) cp[_rng3];
rng2 = (float *) cp[_rng2];
rng1 = (float *) cp[_rng1];
mu = (float) CHA_DVAR[_mu];
rho = (float) CHA_DVAR[_rho];
eps = (float) CHA_DVAR[_eps];
alf = (float) CHA_DVAR[_alf];
fbm = (float) CHA_DVAR[_fbm];
rsz = CHA_IVAR[_rsz];
afl = CHA_IVAR[_afl];
wfl = CHA_IVAR[_wfl];
pfl = CHA_IVAR[_pfl];
fbl = CHA_IVAR[_fbl];
nqm = CHA_IVAR[_nqm];
hdel = CHA_IVAR[_hdel];
pup = CHA_IVAR[_pup];
if (pfl <= 0) rng1 = rng0; // bypass rng1
if (wfl <= 0) rng2 = rng1; // bypass rng2
mask = rsz - 1;
}
// ss -> rng0
// uu -> rng1
// uf -> rng2
// ee -> rng3
rhd = CHA_IVAR[_rhd];
puc = CHA_IVAR[_puc];
pwr = (float) CHA_DVAR[_pwr];
if (nqm) iqm = iqmp[0];
// loop over chunk
for (i = 0; i < cs; i++) {
//------------------------------------
xx = x[i];
ih = (rhd + i) & mask;
is = ih + rsz;
id = is - hdel;
// simulate feedback
yy = 0;
for (j = 0; j < fbl; j++) {
ij = (id - j) & mask;
yy += sfbp[j] * rng0[ij];
}
// apply pre-emphasis filter
if (pfl > 0) {
uu = 0;
for (j = 0; j < pfl; j++) {
ij = (is - j) & mask;
uu += ffrp[j] * rng0[ij];
}
rng1[ih] = uu;
}
// estimate feedback
ye = 0;
if (afl > 0) {
for (j = 0; j < afl; j++) {
ij = (id - j) & mask;
ye += efbp[j] * rng1[ij];
}
}
// apply feedback to input signal
ee = xx + yy - ye;
//------------------------------------
// apply whiten filter
if (wfl > 0) {
rng3[ih] = ee;
ef = uf = 0;
for (j = 0; j < wfl; j++) {
ij = (is - j) & mask;
ef += rng3[ij] * wfrp[j];
uf += rng1[ij] * wfrp[j];
}
rng2[ih] = uf;
} else {
ef = ee;
}
// update adaptive feedback coefficients
if (afl > 0) {
uf = rng2[id & mask];
pwr = rho * (ef * ef + uf * uf) + (1 - rho) * pwr;
mmu = mu / (eps + pwr); // modified mu
for (j = 0; j < afl; j++) {
ij = (id - j) & mask;
uf = rng2[ij];
efbp[j] += mmu * ef * uf;
}
}
// update pre-emphasis filter coefficients
if (pup) {
puc = (puc + 1) % pup;
if (puc == 0) {
sum = 0;
for (j = 0; j < pfl; j++) {
jp1 = j + 1;
nfc = (jp1 < pfl) ? jp1 : pfl;
cfc = 0;
for (k = 0; k < nfc; k++) {
cfc += efbp[j - k] * ffrp[k];
}
ffrp[j] += alf * (cfc - ffrp[j]);
sum += ffrp[j];
}
sum /= pfl;
for (j = 0; j < pfl; j++) {
ffrp[j] -= sum;
}
}
}
// save quality metrics
if (nqm) {
dm = 0;
for (j = 0; j < fbl; j++) {
if (pfl) {
jp1 = j + 1;
nfc = (jp1 < pfl) ? jp1 : pfl;
cfc = 0;
for (k = 0; k < nfc; k++) {
cfc += efbp[j - k] * ffrp[k];
}
} else {
cfc = efbp[j];
}
dif = (j < afl) ? sfbp[j] - cfc : sfbp[j];
dm += dif * dif;
}
qm[iqm++] = dm / fbm;
}
// copy AFC signal to output
y[i] = ee;
}
CHA_IVAR[_puc] = puc;
CHA_DVAR[_pwr] = pwr;
if (nqm) {
iqmp[0] = iqm;
if ((iqm + cs) > nqm) nqm = 0;
}
}
FUNC(void)
cha_afc_output(CHA_PTR cp, float *x, int cs)
{
int i, j, rhd, rtl;
static float *rng0;
static int rsz, mask;
if (CHA_IVAR[_mxl] == 0) { // if no AFC, do nothing
return;
}
if (CHA_IVAR[_in1] == 0) {
rng0 = (float *) cp[_rng0];
rsz = CHA_IVAR[_rsz];
mask = rsz - 1;
CHA_IVAR[_in1] = CHA_IVAR[_in2];
}
rsz = CHA_IVAR[_rsz];
rtl = CHA_IVAR[_rtl];
// copy chunk to ring buffer
rhd = rtl;
for (i = 0; i < cs; i++) {
j = (rhd + i) & mask;
rng0[j] = x[i];
}
rtl = (rhd + cs) % rsz;
CHA_IVAR[_rhd] = rhd;
CHA_IVAR[_rtl] = rtl;
}