-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathanafilt.c
406 lines (373 loc) · 11.7 KB
/
anafilt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// anafilt.c
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sigpro.h"
#define dcopy(x,y,n) memcpy(x,y,(n)*sizeof(double))
#define dzero(x,n) memset(x,0,(n)*sizeof(double))
/***********************************************************/
// bilinear_pole - transform analog pole to IIR pole
static void
bilinear_pole(double* p, double* ap, double wp)
{
double aa, bb, c1, c2, c3, p1, p2;
aa = 2 * ap[0];
bb = ap[0] * ap[0] + ap[1] * ap[1];
c1 = 1 - aa + bb;
c2 = 2 * (bb - 1);
c3 = 1 + aa + bb;
p1 = -c2 / (2 * c1);
if (ap[1] == 0) {
p[0] = p1;
p[1] = 0;
}
else {
p2 = sqrt(c3 / c1 - p1 * p1);
p[0] = p1;
p[1] = p2;
p[2] = p1;
p[3] = -p2;
}
}
static double
gain(double* z, double* p, int nz, double w)
{
double f[2], x[2], y[2], xr, xi, yr, yi, xm, ym, temp;
int j, jr, ji;
f[0] = cos(M_PI * w);
f[1] = sin(M_PI * w);
x[0] = y[0] = 1;
x[1] = y[1] = 0;
for (j = 0; j < nz; j++) {
jr = j * 2;
ji = jr + 1;
xr = f[0] - z[jr];
xi = f[1] - z[ji];
yr = f[0] - p[jr];
yi = f[1] - p[ji];
temp = x[0] * xr - x[1] * xi;
x[1] = x[0] * xi + x[1] * xr;
x[0] = temp;
temp = y[0] * yr - y[1] * yi;
y[1] = y[0] * yi + y[1] * yr;
y[0] = temp;
}
xm = sqrt(x[0] * x[0] + x[1] * x[1]);
ym = sqrt(y[0] * y[0] + y[1] * y[1]);
temp = ym / xm;
return (temp);
}
// pole2zp - transform analog pole to IIR zeros, poles, and gain
static void
pole2zp(double* z, double* p, double* g, double* ap, int np, float* wn, int ft)
{
double bw, u0, u1, wc, wp, Q, M, A, zz[2], pp[2], M1[2], M2[2], N[2];
double p1[4], p2[4], z1[4];
int j, m = 4;
if ((ft == 0) || (ft == 1)) {
u0 = tan(M_PI * wn[0] / 2);
pp[0] = ap[0] * u0;
pp[1] = ap[1] * u0;
wp = (ft == 0) ? 1 : -1;
bilinear_pole(p, pp, wp);
z[0] = -wp;
z[1] = 0;
if (ap[1] == 0) {
g[0] = fabs(wp - p[0]) / 2;
} else {
z[2] = z[0];
z[3] = z[1];
g[0] = ((wp - p[0]) * (wp - p[0]) + p[1] * p[1]) / 4;
}
} else {
u0 = tan(M_PI * wn[0] / 2);
u1 = tan(M_PI * wn[1] / 2);
bw = u1 - u0; // bandwidth
wc = sqrt(u1 * u0); // center frequency
if (ft == 2) {
wp = 1;
z1[0] = 1;
z1[1] = 0;
z1[2] = -1;
z1[3] = 0;
} else {
wp = -1;
zz[0] = 0;
zz[1] = wc;
bilinear_pole(z1, zz, wp);
}
Q = wc / bw;
M1[0] = (ap[0] / Q) / 2;
M1[1] = (ap[1] / Q) / 2;
N[0] = M1[0] * M1[0] - M1[1] * M1[1] - 1;
N[1] = M1[0] * M1[1] + M1[1] * M1[0];
M = sqrt(sqrt(N[0] * N[0] + N[1] * N[1]));
A = atan2(N[1], N[0]) / 2;
M2[0] = M * cos(A);
M2[1] = M * sin(A);
u0 = tan(M_PI * wn[0] / 2);
pp[0] = (M1[0] + M2[0]) * wc;
pp[1] = (M1[1] + M2[1]) * wc;
bilinear_pole(p1, pp, wp);
pp[0] = (M1[0] - M2[0]) * wc;
pp[1] = (M1[1] - M2[1]) * wc;
bilinear_pole(p2, pp, wp);
if (ap[1] == 0) {
for (j = 0; j < m; j++) {
z[j] = z1[j];
p[j] = p1[j];
}
}
else {
for (j = 0; j < m; j++) {
z[j] = z1[j];
p[j] = p1[j];
z[j + m] = z1[j];
p[j + m] = p2[j];
}
}
wc = (ft == 2) ? sqrt(wn[0] * wn[1]) : 0;
g[0] = gain(z, p, m, wc);
}
}
// ap2zp - transform analog prototype to IIR zeros, poles, and gain
static void
ap2zp(double* z, double* p, double* g, double* ap, int np, float* wn, int ft)
{
double gg;
int j, jm, m;
m = ((ft == 0) || (ft == 1)) ? 1 : 2;
gg = 1;
for (j = 0; j < np; j += 2) {
jm = j * m * 2;
pole2zp(z + jm, p + jm, g, ap + j * 2, np, wn, ft);
gg *= g[0];
}
*g = gg;
}
/***********************************************************/
// transform polynomial roots to coefficients
static void
root2poly(double* r, double* p, int n)
{
double* pp, * qq;
int i, ir, ii, j, jr, ji;
pp = (double*)calloc((n + 1) * 2, sizeof(double));
qq = (double*)calloc((n + 1) * 2, sizeof(double));
dzero(pp, (n + 1) * 2);
dzero(qq, (n + 1) * 2);
pp[0] = qq[0] = 1;
for (i = 0; i < n; i++) {
ir = i * 2;
ii = i * 2 + 1;
qq[2] = pp[2] - r[ir];
qq[3] = pp[3] - r[ii];
for (j = 0; j < i; j++) {
jr = j * 2;
ji = j * 2 + 1;
qq[jr + 4] = pp[jr + 4] - (pp[jr + 2] * r[ir] - pp[ji + 2] * r[ii]);
qq[ji + 4] = pp[ji + 4] - (pp[ji + 2] * r[ir] + pp[jr + 2] * r[ii]);
}
dcopy(pp, qq, (n + 1) * 2);
}
// return real part of product-polynomial coefficients
for (i = 0; i < (n + 1); i++) {
p[i] = pp[i * 2];
}
free(pp);
free(qq);
}
// transform filterbank poles and zeros to IIR coefficients
static void
zp2ba(double* z, double* p, int nz, float* b, float* a)
{
double *bd, *ad;
int i;
bd = (double*)calloc(nz + 1, sizeof(double));
ad = (double*)calloc(nz + 1, sizeof(double));
root2poly(z, bd, nz);
root2poly(p, ad, nz);
for (i = 0; i <= nz; i++) {
b[i] = (float)bd[i];
a[i] = (float)ad[i];
}
free(bd);
free(ad);
}
// lp2tf - lp2tf band-pass or band-stop transfer function
static void
lp2tf(double* lp, int np, float* b, float* a, float* wn, int ft)
{
double *ap;
double *z, *p, g[1];
int i, ir, ii, m;
// allocate local arrays
ap = (double*)calloc(np * 2, sizeof(double));
z = (double*)calloc(np * 4, sizeof(double));
p = (double*)calloc(np * 4, sizeof(double));
// copy low-pass prototype to analog prototype
m = np / 2;
for (i = 0; i < m; i++) {
ir = 2 * i;
ii = ir + 1;
ap[ir] = lp[ir];
ap[ii] = lp[ii];
ap[2 * m + ir] = lp[ir];
ap[2 * m + ii] = -lp[ii];
}
if (np % 2) { // copy real pole, if any
ap[2 * np - 2] = lp[np - 1];
ap[2 * np - 1] = 0;
}
// transform analog prototype to zeros and poles
ap2zp(z, p, g, ap, np, wn, ft);
// transform poles & zeros to IIR coeficients
if (ft > 1) np *= 2;
zp2ba(z, p, np, b, a);
for (i = 0; i <= np; i++) {
b[i] *= (float)g[0];
}
// free local arrays
free(ap);
free(z);
free(p);
}
/**********************************************************/
static void
butterp(double *p, int n)
{
double aa;
int i, ir, ii, m;
if (n < 1) {
return;
}
m = n / 2;
for (i = 0; i < m; i++) {
ir = 2 * i;
ii = ir + 1;
aa = ii * M_PI / (2 * n);
p[ir] = (-sin(aa));
p[ii] = (cos(aa));
}
if (n % 2) {
p[n - 1] = -1;
}
}
static void
besselp(double *p, int n)
{
int i;
static double p01[] = {-1.000000000};
static double p02[] = {-0.866025404, 0.500000000};
static double p03[] = {-0.745640386, 0.711366625,-0.941600027};
static double p04[] = {-0.657211172, 0.830161435,-0.904758797, 0.270918733};
static double p05[] = {-0.590575945, 0.907206756,-0.851553619, 0.442717464,
-0.926442077};
static double p06[] = {-0.538552682, 0.961687688,-0.799654186, 0.562171735,
-0.909390683, 0.185696440};
static double p07[] = {-0.496691726, 1.002508508,-0.752735543, 0.650469631,
-0.880002934, 0.321665276,-0.919487156};
static double p08[] = {-0.462174041, 1.034388681,-0.711138181, 0.718651731,
-0.847325080, 0.425901754,-0.909683155, 0.141243798};
static double p09[] = {-0.433141556, 1.060073670,-0.674362269, 0.773054621,
-0.814802111, 0.508581569,-0.891121702, 0.252658093,-0.915495780};
static double p10[] = {-0.408322073, 1.081274843,-0.641751387, 0.817583617,
-0.783769441, 0.575914754,-0.868845964, 0.343000823,
-0.909134732, 0.113958314};
static double p11[] = {-0.386814951, 1.099117467,-0.612687155, 0.854781389,
-0.754693893, 0.631915005,-0.845304401, 0.417869692,
-0.896365671, 0.208048038,-0.912906724};
static double p12[] = {-0.367964009, 1.114373576,-0.586636932, 0.886377275,
-0.727668162, 0.679296118,-0.821729694, 0.481021212,
-0.880253434, 0.287177950,-0.908447823, 0.095506365};
static double p13[] = {-0.351279232, 1.127591548,-0.563155984, 0.913590034,
-0.702623468, 0.719961189,-0.798746069, 0.535075212,
-0.862509420, 0.354741373,-0.899131467, 0.176834296,
-0.911091467};
static double p14[] = {-0.336386822, 1.139172298,-0.541876678, 0.937304368,
-0.679425643, 0.755285731,-0.776659139, 0.581917068,
-0.844119916, 0.413165383,-0.886950667, 0.247007918,
-0.907793214, 0.082196399};
static double p15[] = {-0.322996306, 1.149416155,-0.522495407, 0.958178726,
-0.657919659, 0.786289550,-0.755602717, 0.622939636,
-0.825663145, 0.464234875,-0.873126462, 0.308235247,
-0.900698169, 0.153768120,-0.909748236};
static double p16[] = {-0.310878276, 1.158552841,-0.504760644, 0.976713748,
-0.637950251, 0.813745354,-0.735616630, 0.659195088,
-0.807479029, 0.509293375,-0.858426423, 0.362169727,
-0.891172307, 0.216708966,-0.907209960, 0.072142113};
static double *pp[] = {p01, p02, p03, p04, p05, p06, p07, p08,
p09, p10, p11, p12, p13, p14, p15, p16};
if (n < 1 || n > 16) {
return;
}
for (i = 0; i < n; i++) {
p[i] = ((pp[n-1])[i]);
}
}
static void
chebyp(double *p, int n, double rip)
{
double aa, eps, mu;
int i, ir, ii, m;
if (n < 1) {
return;
}
m = n / 2;
eps = pow(10.0, rip / 20) - 1;
mu = log((1 + sqrt(1 + eps * eps)) / eps) / n; // =asinh(1/eps)/n
for (i = 0; i < m; i++) {
ir = 2 * i;
ii = ir + 1;
aa = ii * M_PI / (2 * n);
p[ir] = (-sin(aa) * sinh(mu));
p[ii] = (cos(aa) * cosh(mu));
}
if (n % 2) {
p[n - 1] = -1;
}
}
/**********************************************************/
FUNC(void) sp_bessel( // Bessel filter design
float *b, // input coeffcients
float *a, // output coeffcients
int n, // filter order
float *wn, // cutoff frequency
int ft // filter type
)
{
double *p;
p = (double *) calloc(n, sizeof(double));
besselp(p, n);
lp2tf(p, n, b, a, wn, ft);
free(p);
}
FUNC(void) sp_butter( // Butterworth filter design
float *b, // input coeffcients
float *a, // output coeffcients
int n, // filter order
float *wn, // cutoff frequency
int ft // filter type
)
{
double *p;
p = (double *) calloc(n, sizeof(double));
butterp(p, n);
lp2tf(p, n, b, a, wn, ft);
free(p);
}
FUNC(void) sp_cheby( // Chebyshev filter design
float *b, // input coeffcients
float *a, // output coeffcients
int n, // filter order
float *wn, // cutoff frequency
int ft, // filter type
double rip // pass-band ripple
)
{
double *p;
p = (double *) calloc(n, sizeof(double));
chebyp(p, n, rip);
lp2tf(p, n, b, a, wn, ft);
free(p);
}