forked from BUPT-GAMMA/HiD-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainattack.py
309 lines (265 loc) · 13.1 KB
/
trainattack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import argparse
import torch
import numpy as np
import warnings
import os
from load_data import load_data
from model import ReactionNet
from pandas import Series,DataFrame
from sklearn.metrics import f1_score
from torch.nn.functional import softmax
from sklearn.metrics import roc_auc_score
from utils import read_config
# from memory_profiler import profile
from earlystopping import EarlyStopping
from earlystopping import stopping_args
import time
import torch.nn.functional as F
from utils import feature_norm
import torch.utils.data as Data
from gcn import GCNNet
from gat import GATNet
import numpy as np
import scipy.sparse as sp
warnings.filterwarnings('ignore')
#@profile(precision=4, stream=open('main.log','w+'))
def main():
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--tune', type=str, default='False', help='if tune')
parser.add_argument('--configfile', type=str, default='1111', help='configfile')
parser.add_argument('--predictfile', type=str, default='1111', help='predictfile')
parser.add_argument('--times', type=int, default=3, help='config times')
parser.add_argument('--seed', type=int, default=9, help='random seed')
parser.add_argument('--repeat', type=int, default=5, help='repeat time')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay (L2 loss on parameters)')
parser.add_argument('--hidden', type=int, default=64, help='hidden size')
parser.add_argument('--head1', type=int, default=1, help='gat head1')
parser.add_argument('--head2', type=int, default=1, help='gat head2')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate')
parser.add_argument('--drop', type=str, default='True', help='whether to dropout or not')
parser.add_argument('--activation', type=str, default='relu', choices=['relu', 'leaky_relu', 'elu'])
parser.add_argument('--dataset', type=str, default='cora', choices=['cora', 'citeseer', 'pubmed', 'chameleon', 'squirrel', 'actor', 'sbm'])
parser.add_argument('--split', type=int, default=0)
parser.add_argument('--epoch', type=int, default=200, help='number of epochs to train the base model')
parser.add_argument('--k', type=int, default=10, help='k')
parser.add_argument('--alpha', type=float, default=0, help='tolerance to stop EM algorithm')
parser.add_argument('--beta', type=float, default=1, help='tolerance to stop EM algorithm')
parser.add_argument('--gamma', type=float, default=0, help='tolerance to stop EM algorithm')
parser.add_argument('--sigma1', type=float, default=0.5, help='tolerance to stop EM algorithm')
parser.add_argument('--sigma2', type=float, default=0.5, help='tolerance to stop EM algorithm')
parser.add_argument('--calg', type=str, default='cal_gradient_2', help='calculate gradient') # TODO
parser.add_argument('--gpu', default='9', type=int, help='-1 means cpu')
parser.add_argument('--earlystop', type=bool, default=False, help='if tune')
parser.add_argument('--patience', type=int, default=50, help='if tune')
parser.add_argument('--reg_lambda', type=float, default=0, help='if tune')
parser.add_argument('--print_interval', type=int, default=100, help='if tune')
parser.add_argument('--mode', type=int, default=4, help='if tune')
parser.add_argument('--ratio', type=float, default=0, help='if tune')
parser.add_argument('--mn', type=str, default='gdgc', help='if tune')
args = parser.parse_args()
if args.tune == 'True' and args.mn == 'gdgc':
args = read_config(args)
print(args)
device = torch.device(f'cuda:{args.gpu}' if torch.cuda.is_available() else 'cpu')
dataset = load_data("./data/hetero", args.dataset)
if args.dataset in ['cora', 'citeseer', 'pubmed']:
data = dataset.data
train_mask = data.train_mask
val_mask = data.val_mask
test_mask = data.test_mask
else:
i = args.split
dataset.process()
data = dataset.data
train_mask = data['train_mask'].T[i]
val_mask = data['val_mask'].T[i]
test_mask = data['test_mask'].T[i]
#attack edges
adj = torch.sparse_coo_tensor(data.edge_index, torch.ones(data.edge_index.size(1)),
[data.x.size(0), data.x.size(0)]).to_dense()
adj_fan = 1 - adj
# adj_ = sp.triu(sp.coo_matrix(adj), 1)
# adj_fan_ = sp.triu(sp.coo_matrix(adj_fan), 1)
adj_ = sp.coo_matrix(adj)
adj_fan_ = sp.coo_matrix(adj_fan)
adj_cand = np.array(adj_.nonzero())
adj_fan_cand = np.array(adj_fan_.nonzero())
# r = dataset.data.x.max(1).mean()
r = 1
dim = data.x.shape[1]
# add edges
if args.mode == 0:
add_num = int(args.ratio * adj_cand.shape[1])
print(add_num)
adj_sele = np.random.choice(np.arange(adj_fan_cand.shape[1]), add_num, replace=False)
adj_sele = adj_fan_cand[:, adj_sele]
# adj_sele2 = np.array([adj_sele[1], adj_sele[0]])
# adj_sele = np.hstack([adj_sele, adj_sele2])
adj_sele = np.hstack([data.edge_index.numpy(), adj_sele])
# adj_sele = np.hstack([adj_sele, adj_cand])
# adj_new = sp.coo_matrix((np.ones(adj_sele.shape[1]), (adj_sele[0, :], adj_sele[1, :])), shape=adj_.shape)
# adj_new = adj_new + adj_new.T + sp.eye(adj_new.shape[0])
adj_new = sp.coo_matrix((np.ones(adj_sele.shape[1]), (adj_sele[0, :], adj_sele[1, :])), shape=adj_.shape)
adj_new = torch.tensor(adj_new.todense()).to_sparse()
data.edge_index = adj_new.indices()
# delete edges
elif args.mode == 1:
dele_num = int((1 - args.ratio) * adj_cand.shape[1])
adj_sele = np.random.choice(np.arange(adj_cand.shape[1]), dele_num, replace=False)
adj_sele = adj_cand[:, adj_sele]
# adj_new = sp.coo_matrix((np.ones(adj_sele.shape[1]), (adj_sele[0, :], adj_sele[1, :])), shape=adj_.shape)
# adj_new = adj_new + adj_new.T + sp.eye(adj_new.shape[0])
# adj_new = torch.tensor(adj_new.todense()).to_sparse()
# data.edge_index = adj_new.indices()
# adj_sele = np.hstack([data.edge_index.numpy(), adj_sele])
adj_new = sp.coo_matrix((np.ones(adj_sele.shape[1]), (adj_sele[0, :], adj_sele[1, :])), shape=adj_.shape)
adj_new = torch.tensor(adj_new.todense()).to_sparse()
data.edge_index = adj_new.indices()
elif args.mode == 2:
eps = np.random.normal(size=dataset.data.x.shape)
noise = args.ratio * r * eps
data.x += torch.tensor(noise, dtype=data.x.dtype)
# feat = sp.coo_matrix(feat)
else:
pass
accs = []
micro_f1s = []
macro_f1s = []
macro_f1s_val = []
auc_score_list = []
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
# criterion = F.nll_loss()
for seed in range(args.repeat):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if args.mn == 'gdgc' or args.mn == 'appnp':
model = ReactionNet(args, dataset.num_features, dataset.num_classes).to(device)
elif args.mn == 'gcn':
model = GCNNet(args, dataset.num_features, dataset.num_classes).to(device)
elif args.mn == 'gat':
model = GATNet(args, dataset.num_features, dataset.num_classes).to(device)
# TODO
reg_lambda = torch.tensor(args.reg_lambda, device=device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # Define optimizer.
val_accs = []
test_accs = []
val_micro_f1s = []
test_micro_f1s = []
val_macro_f1s = []
test_macro_f1s = []
logits_list = []
early_stopping = EarlyStopping(model, **stopping_args)
start_time = time.time()
last_time = start_time
for epoch in range(early_stopping.max_epochs):
# train(data.to(device))
# train
data.to(device)
model.train()
optimizer.zero_grad() # Clear gradients.
train_out = model(data.x, data.edge_index) # Perform a single forward pass.
# train_loss = criterion(train_out[train_mask], data.y[train_mask])
train_loss = F.nll_loss(train_out[train_mask], data.y[train_mask])
# TODO
l2_reg = sum((torch.sum(param ** 2) for param in model.reg_params))
train_loss = train_loss + args.reg_lambda / 2 * l2_reg
# Compute the loss solely based on the training nodes.
train_loss.backward() # Derive gradients.
optimizer.step()
train_preds = torch.argmax(train_out, dim=1)
#train
train_acc = torch.sum(train_preds[train_mask] == data.y[train_mask]).float() / data.y[train_mask].shape[0]
# val
model.eval()
val_out = model(data.x, data.edge_index) # re calculate
# val_loss = criterion(val_out[val_mask], data.y[val_mask])
val_loss = F.nll_loss(val_out[val_mask], data.y[val_mask])
val_preds = torch.argmax(val_out, dim=1)
val_acc = torch.sum(val_preds[val_mask] == data.y[val_mask]).float() / data.y[val_mask].shape[0]
val_f1_macro = f1_score(data.y[val_mask].cpu(), val_preds[val_mask].cpu(), average='macro')
val_f1_micro = f1_score(data.y[val_mask].cpu(), val_preds[val_mask].cpu(), average='micro')
val_accs.append(val_acc.item())
val_macro_f1s.append(val_f1_macro)
val_micro_f1s.append(val_f1_micro)
# test
test_acc = torch.sum(val_preds[test_mask] == data.y[test_mask]).float() / data.y[test_mask].shape[0]
test_f1_macro = f1_score(data.y[test_mask].cpu(), val_preds[test_mask].cpu(), average='macro')
test_f1_micro = f1_score(data.y[test_mask].cpu(), val_preds[test_mask].cpu(), average='micro')
test_accs.append(test_acc.item())
test_macro_f1s.append(test_f1_macro)
test_micro_f1s.append(test_f1_micro)
logits_list.append(val_out[test_mask])
print(f"Epoch {epoch}: "
f"Train loss = {train_loss:.2f}, "
f"train acc = {train_acc * 100:.2f}, "
f"val loss = {val_loss:.2f}, "
f"val acc = {val_acc * 100:.2f} "
f"test acc = {test_acc * 100:.2f} "
)
if len(early_stopping.stop_vars) > 0:
stop_vars = [val_acc.item(), val_loss.item()]
if early_stopping.check(stop_vars, epoch):
break
max_iter = val_accs.index(max(val_accs))
accs.append(test_accs[max_iter])
max_iter = val_macro_f1s.index(max(val_macro_f1s))
macro_f1s.append(test_macro_f1s[max_iter])
macro_f1s_val.append(val_macro_f1s[max_iter])
max_iter = val_micro_f1s.index(max(val_micro_f1s))
micro_f1s.append(test_micro_f1s[max_iter])
# auc
best_logits = logits_list[max_iter]
best_proba = softmax(best_logits, dim=1)
auc_score_list.append(roc_auc_score(y_true=data.y[test_mask].detach().cpu().numpy(),
y_score=best_proba.detach().cpu().numpy(),
multi_class='ovr'))
print("\tMacro-F1: {:.4f} Micro-F1: {:.4f} acc {:.4f}"
.format(test_macro_f1s[max_iter],
test_micro_f1s[max_iter],
test_accs[max_iter],
)
)
print("\t[Classification] Acc_mean:{:.4f} Macro-F1_mean: {:.4f} var: {:.4f} Micro-F1_mean: {:.4f} var: {:.4f} auc {:.4f}"
.format(np.mean(accs),
np.mean(macro_f1s),
np.std(macro_f1s),
np.mean(micro_f1s),
np.std(micro_f1s),
np.mean(auc_score_list),
)
)
# train_acc, val_acc, tmp_test_acc = test(data)
# if val_acc > best_val_acc:
# best_val_acc = val_acc
# test_acc = tmp_test_acc
# print(f'Epoch: {epoch:03d}, Train: {train_acc:.4f}, '
# f'Val: {best_val_acc:.4f}, Test: {test_acc:.4f}')
if args.tune == 'True':
result = {
'model': [args.mn],
'dataset': [args.dataset],
'mode': [args.mode],
'ratio': [args.ratio],
'Macro-F1_mean': [np.mean(macro_f1s)],
'Macro-F1_var': [np.std(macro_f1s)],
'Micro-F1_mean': [np.mean(micro_f1s)],
'Micro-F1_var': [np.std(micro_f1s)],
'auc_mean': [np.mean(auc_score_list)],
'auc_var': [np.std(auc_score_list)],
'acc_mean': [np.mean(accs)],
'acc_var': [np.std(accs)],
'config_file': [args.configfile],
'times': [args.times],
}
df = DataFrame(result)
print(df)
path = 'prediction/excel/{}'.format(args.predictfile)
if not os.path.exists(path):
os.makedirs(path)
df.to_csv('{}/{}_{}_{}_{}_{}.csv'.format(path, args.mn, args.dataset, args.mode, args.ratio, args.times))
if __name__=='__main__':
main()
os._exit(0)