-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathB2.cpp
174 lines (158 loc) · 3.52 KB
/
B2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#include "bits/stdc++.h"
using namespace std;
int adj[111][111];
int xp[100010], a[100010], f[100010], p[100010];
int xb[100010], d[100010], g[100010];
const int inf = 1e8;
struct MaxFlow {
#define MAX_N 100010
#define INF inf
typedef long long lld;
struct Node
{
vector<int> adj;
};
Node graf[MAX_N];
struct Edge
{
int u, v, cap;
int flow;
};
vector<Edge> E;
int v;
int s, t;
int dist[MAX_N];
int upTo[MAX_N];
int idd = 0;
//Dinicov algoritam za nalazenje maksimalnog protoka izmedju dva cvora u grafu
//Slozenost: O(V^2 * E)
inline bool BFS()
{
for (int i=1;i<=v;i++) dist[i] = -1;
queue<int> bfs_queue;
bfs_queue.push(s);
dist[s] = 0;
while (!bfs_queue.empty())
{
int xt = bfs_queue.front();
bfs_queue.pop();
for (int i=0;i<graf[xt].adj.size();i++)
{
int currID = graf[xt].adj[i];
int xt1 = E[currID].v;
if (dist[xt1] == -1 && E[currID].flow < E[currID].cap)
{
bfs_queue.push(xt1);
dist[xt1] = dist[xt] + 1;
}
}
}
return (dist[t] != -1);
}
inline int DFS(int xt, int minCap)
{
if (minCap == 0) return 0;
if (xt == t) return minCap;
while (upTo[xt] < graf[xt].adj.size())
{
int currID = graf[xt].adj[upTo[xt]];
int xt1 = E[currID].v;
if (dist[xt1] != dist[xt] + 1)
{
upTo[xt]++;
continue;
}
int aug = DFS(xt1, min(minCap, E[currID].cap - E[currID].flow));
if (aug > 0)
{
E[currID].flow += aug;
if (currID&1) currID--; else currID++;
E[currID].flow -= aug;
return aug;
}
upTo[xt]++;
}
return 0;
}
inline int Dinic()
{
int flow = 0;
while (true)
{
if (!BFS()) break;
for (int i=1;i<=v;i++) upTo[i] = 0;
while (true)
{
int currFlow = DFS(s, INF);
if (currFlow == 0) break;
flow += currFlow;
}
}
return flow;
}
inline void addEdge(int u, int v, int cap)
{
// cout << u << ' ' << v << ' ' << cap << endl;
Edge E1, E2;
E1.u = u, E1.v = v, E1.cap = cap, E1.flow = 0;
E2.u = v, E2.v = u, E2.cap = 0, E2.flow = 0;
graf[u].adj.push_back(idd++);
E.push_back(E1);
graf[v].adj.push_back(idd++);
E.push_back(E2);
}
} F;
int main(int argc, char const *argv[])
{
ios_base :: sync_with_stdio (false);
cin.tie(0);
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(i != j) {
adj[i][j] = 1000000001;
}
}
}
for(int i = 1; i <= m; i++) {
int u, v;
cin >> u >> v;
adj[u][v] = adj[v][u] = 1;
}
for(int k = 1; k <= n; k++) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
adj[i][j] = min(adj[i][j], adj[i][k] + adj[k][j]);
}
}
}
int s, b, k, h;
cin >> s >> b >> k >> h;
vector <pair <int, int>> v;
for(int i = 1; i <= s; i++) {
cin >> xp[i] >> a[i] >> f[i];
}
for(int i = 1; i <= b; i++) {
cin >> xb[i] >> d[i];
}
F.s = s + b + 1;
F.t = s + b + 2;
F.v = s + b + 2;
for(int i = 1; i <= s; i++) {
for(int j = 1; j <= b; j++) {
if(a[i] >= d[j] && adj[xp[i]][xb[j]] <= f[i]) {
F.addEdge(i, s + j, 1);
}
}
}
for(int i = 1; i <= s; i++) {
F.addEdge(F.s, i, 1);
}
for(int i = 1; i <= b; i++) {
F.addEdge(s + i, F.t, 1);
}
int mat = F.Dinic();
cout << min(1LL * mat * k, 1LL * h * s) << endl;
return 0;
}