-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path7_optimize_bias_proj_img.py
211 lines (149 loc) · 6.93 KB
/
7_optimize_bias_proj_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# `BSD 3-Clause License
# Copyright (c) 2022, GIST CGLAB
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# This script optimizes optimal projector input image and theta (Section 4-C)
import enoki as ek
import mitsuba
mitsuba.set_variant('gpu_autodiff_rgb')
from mitsuba.core import Float, Thread
from mitsuba.core.xml import load_file
from mitsuba.python.util import traverse, ParameterMap
from mitsuba.python.autodiff import render, write_bitmap, Adam
import torch
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import os
import thinplate as tps
from common import *
def img_to_tps_form(img):
return torch.unsqueeze(torch.reshape(img, (600, 600,3)).permute(2,0,1), 0)
def tps_to_img_form(tps_img):
return torch.flatten(torch.squeeze(tps_img).permute(1,2,0))
def tps_to_ek_arr(tps_img):
return Float(tps_to_img_form(tps_img))
def ek_arr_to_tps(ek_arr):
return img_to_tps_form(ek_arr.torch())
def clamp(arr, min=None, max=None):
if min==None:
min=arr
if max==None:
max=arr
return ek.select(arr <= Float(max), ek.select(arr >= Float(min), arr, Float(min)), Float(max))
if __name__ == "__main__":
myapp = myImageDisplayApp()
iPad = iPadCamera()
os.chdir(scene_path)
imageio.plugins.freeimage.download()
output_dir = 'result/'
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
# Load example scene
Thread.thread().file_resolver().append('.')
scene = load_file('/out_scene.xml')
params = traverse(scene)
params.keep(['Projector.irradiance.data'])
params.update()
# Load TPS parameter (torch)
theta = torch.load("tps_param.pt")
# c_dst : normalized control points
c_dst = tps.torch.uniform_grid((6,6)).view(-1, 2)
grid = tps.torch.tps_grid(theta, torch.tensor(c_dst), torch.Size([1, 3, 600, 600])).cuda()
# Load reference image
ref = read_png("ref.png")
# Set optimizer
opt = Adam(params, lr=0.01)
# Set initial bias
bias = Float(np.zeros((640*480*3)))
# Dummy reading..
read_png("captured_check.png")
time_a = time.time()
################################################
# Optimize projector input image without theta #
################################################
for it in range(200):
# Constraint 1. Projected image is not a HDR image.
params["Projector.irradiance.data"] = clamp(params['Projector.irradiance.data'], min=0.0, max=1.0)
params.update()
# Render image
render_img = render(scene, optimizer=opt, unbiased=True, spp=5)
render_img = clamp(render_img, min=0.0, max=1.0)
# write_bitmap(output_dir+"rendered_%03i.png" % it, render_img, (640, 480))
# write_bitmap(output_dir+"proj_input_%03i.png" % it, params["Projector.irradiance.data"], (600, 600))
loss = ek.hsum(ek.sqr(ref - (render_img))) / len(ref)
ek.backward(loss)
opt.step()
if it%20 == 0:
print("iter : ", it, "error : ", loss)
time_b = time.time()
print('total : %f' % (((time_b - time_a) * 1000)), 'ms')
# project 200'th img
# Constraint 1. Projected image is not a HDR image.
params["Projector.irradiance.data"] = clamp(params['Projector.irradiance.data'], min=0.0, max=1.0)
params.update()
# Apply TPS
warped = tps_to_ek_arr(F.grid_sample(ek_arr_to_tps(params["Projector.irradiance.data"]), grid))
# Project 200'th image
myapp.emit_image_update_arr(warped)
time.sleep(0.1)
#############################################
# Optimize projector input image with theta #
#############################################
time_a = time.time()
# initial optimizing without bias
for it in range(200, 501):
# Constraint 1. Projected image is not a HDR image.
params["Projector.irradiance.data"] = clamp(params['Projector.irradiance.data'], min=0.0, max=1.0)
params.update()
# Apply TPS
warped = tps_to_ek_arr(F.grid_sample(ek_arr_to_tps(params["Projector.irradiance.data"]), grid))
# Save texture
if it%20 == 0:
write_bitmap(output_dir+"warped_texture_%03i.png" % it, warped, (600, 600))
# Project warped image
myapp.emit_image_update_arr(warped)
time.sleep(0.1)
# Capture image from camera
iPad.get_rgb_image(output_dir + "captured_%03i" % it)
captured_img = read_png(output_dir + "captured_%03i.png" % it, 640, 480)
# Render image
render_img = render(scene, optimizer=opt, unbiased=True, spp=5)
render_img = clamp(render_img, min=0.0, max=1.0)
if it == 200:
bias = render_img - captured_img
# Optimize bias
bias -= 2 * (bias - render_img + captured_img) * 0.01
# Constraint 2. 0 <= render_img - bias ~= reference <= 1
# 0 <= render_img - bias <= 1
# 0 >= bias - render_img >= -1
# render_img >= bias >= render_img - 1
bias = clamp(bias, min=render_img - Float(1.0), max=render_img)
# write_bitmap(output_dir+"rendered_%03i.png" % it, render_img, (640, 480))
# write_bitmap(output_dir+"bias_%03i.exr" % it, bias, (640, 480))
loss = ek.hsum(ek.sqr(ref - (render_img - bias))) / len(ref)
ek.backward(loss)
opt.step()
if it%20 == 0:
print("iter : ", it, "error : ", loss)
time_b = time.time()
print('total : %f' % (((time_b - time_a) * 1000)), 'ms')