diff --git a/climada/hazard/test/test_trop_cyclone.py b/climada/hazard/test/test_trop_cyclone.py index ca00c4f629..0bdb7cc3cc 100644 --- a/climada/hazard/test/test_trop_cyclone.py +++ b/climada/hazard/test/test_trop_cyclone.py @@ -36,6 +36,7 @@ _stat_er_2011, tctrack_to_si, MBAR_TO_PA, KM_TO_M, H_TO_S, ) from climada.hazard.centroids.centr import Centroids +from climada.hazard.tc_clim_change import get_knutson_scaling_factor import climada.hazard.test as hazard_test DATA_DIR = Path(hazard_test.__file__).parent.joinpath('data') @@ -413,7 +414,7 @@ def test_apply_climate_scenario_track(self): intensity[3, 3] = 3 tc = TropCyclone( intensity=sparse.csr_matrix(intensity), - basin=['NA', 'NA', 'NA', 'NO'], + basin=['NA', 'NA', 'NA', 'WP'], category=np.array([2, 0, 4, 1]), event_id=np.arange(4), frequency=np.ones(4) * 0.5, @@ -435,14 +436,9 @@ def test_apply_climate_scenario_track(self): def test_apply_criterion_track(self): """Test _apply_criterion function.""" - criterion = [ - {'basin': 'NA', 'category': [1, 2, 3, 4, 5], - 'year': 2100, 'change': 1.045} - ] - scale = 0.75 - # artificially increase the size of - # the hazard by repeating (tiling) the data: + # the hazard by repeating (tiling) the + # data: ntiles = 8 intensity = np.zeros((4, 10)) @@ -451,6 +447,7 @@ def test_apply_criterion_track(self): intensity[2, :] = np.arange(10, 20) intensity[3, 3] = 3 intensity = np.tile(intensity, (ntiles, 1)) + tc = TropCyclone( intensity=sparse.csr_matrix(intensity), basin=ntiles * ['NA', 'NA', 'NA', 'WP'], @@ -459,79 +456,54 @@ def test_apply_criterion_track(self): event_id=np.arange(intensity.shape[0]), ) + NA_scaling_05, NA_scaling_45 = [ + get_knutson_scaling_factor(variable=variable, + basin='NA').loc[2035, '8.5'] + for variable in ['cat05', 'cat45'] + ] + WP_scaling_05, WP_scaling_45 = [ + get_knutson_scaling_factor(variable=variable, + basin='WP').loc[2035, '8.5'] + for variable in ['cat05', 'cat45'] + ] + + NA_bas_sel = np.array([True, True, True, False]*ntiles) + WP_bas_sel = ~NA_bas_sel + + cat05_sel = np.repeat(True, ntiles*4) + cat45_sel = np.array([False, False, True, False]*ntiles) + cat03_sel = ~cat45_sel + + NA_scaling_03 = (NA_scaling_05 * np.sum(tc.frequency[cat05_sel & NA_bas_sel]) + - NA_scaling_45 * np.sum(tc.frequency[cat45_sel & NA_bas_sel]) + ) / np.sum(tc.frequency[cat03_sel & NA_bas_sel]) + + WP_scaling_03 = (WP_scaling_05 * np.sum(tc.frequency[cat05_sel & WP_bas_sel]) + - WP_scaling_45 * np.sum(tc.frequency[cat45_sel & WP_bas_sel]) + ) / np.sum(tc.frequency[cat03_sel & WP_bas_sel]) + tc_cc = tc.apply_climate_scenario_knu() + for i_tile in range(ntiles): offset = i_tile * 4 - # no factor applied because of category 0 + # factors to events in basin NA np.testing.assert_array_equal( - tc.frequency[offset + 1], tc_cc.frequency[offset + 1] + tc.frequency[offset + 1] * (1 + NA_scaling_03/100), + tc_cc.frequency[offset + 1] ) - # no factor applied because of basin "WP" np.testing.assert_array_equal( - tc.frequency[offset + 3], tc_cc.frequency[offset + 3] - ) - # factor is applied to the remaining events - np.testing.assert_array_almost_equal( - tc.frequency[offset + 0] * 1.03375, + tc.frequency[offset + 0] * (1 + NA_scaling_03/100), tc_cc.frequency[offset + 0] ) - np.testing.assert_array_almost_equal( - tc.frequency[offset + 2] * 1.03375, + np.testing.assert_array_equal( + tc.frequency[offset + 2] * (1 + NA_scaling_45/100), tc_cc.frequency[offset + 2] ) - - def test_two_criterion_track(self): - """Test apply_climate_scenario_knu function with two criteria""" - criterion = [ - {'basin': 'WP', 'category': [1, 2, 3, 4, 5], - 'year': 2100, 'change': 1.025}, - {'basin': 'NA', 'category': [0, 1, 2, 3, 4, 5], - 'year': 2100, 'change': 0.7}, - {'basin': 'NA', 'category': [1, 2, 3, 4, 5], - 'year': 2100, 'change': 1}, - {'basin': 'NA', 'category': [3, 4, 5], - 'year': 2100, 'change': 1}, - {'basin': 'NA', 'category': [4, 5], - 'year': 2100, 'change': 2} - ] - scale = 0.75 - - intensity = np.zeros((4, 10)) - intensity[0, :] = np.arange(10) - intensity[1, 5] = 10 - intensity[2, :] = np.arange(10, 20) - intensity[3, 3] = 3 - tc = TropCyclone( - intensity=sparse.csr_matrix(intensity), - frequency=np.ones(4) * 0.5, - basin=['NA', 'NA', 'NA', 'WP'], - category=np.array([2, 0, 4, 1]), - event_id=np.arange(4), - ) - - tc_cc = tc.apply_climate_scenario_knu(criterion, scale) - - res_frequency = np.ones(4) * 0.5 - res_frequency[1] = 0.5 * (1 + (0.7 - 1) * scale) - res_frequency[2] = 0.5 * (1 + (2 - 1) * scale) - res_frequency[3] = 0.5 * (1 + (1.025 - 1) * scale) - self.assertTrue(np.allclose(tc_cc.frequency, res_frequency)) - - def test_no_negative_freq(self): - """Test apply_climate_scenario_knu with too high changes and check - that no negative frequencies are returned.""" - criterion = [{'basin': 'SP', 'category': [0, 1], - 'year': 2100, 'change': 0.5} - ] - - tc = TropCyclone( - frequency=np.ones(2), - basin=['SP', 'SP'], - category=np.array([0, 1]), - ) - - tc_cc = tc.apply_climate_scenario_knu(criterion, 3) - self.assertTrue(tc_cc.frequency.min() >= 0.) + # factors to events in basin WP + np.testing.assert_array_equal( + tc.frequency[offset + 3] * (1 + WP_scaling_03/100), + tc_cc.frequency[offset + 3] + ) class TestDumpReloadCycle(unittest.TestCase): def setUp(self):