-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTNC_analysis.R
174 lines (148 loc) · 8.95 KB
/
TNC_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#install.packages("tidyverse", "ggplot", "RSocrata", "tidycensus")
library(tidyverse)
library(ggplot2)
library(RSocrata)
library(tidycensus)
setwd("~/GitHub/Chicago-TNC-analysis")
##Load data ----
##Note, this will load all data available. This will be a large amount of data and take a while!!!!
##You should probably limit your request or download the data once - then load the data from your saved file.
##See https://github.com/Chicago/RSocrata and https://dev.socrata.com/docs/queries/ for details of how to limit the data you retrieve.
##The benefit of using RSocrate is that it preserves the field formatting from the data portal. If you downloaded a csv - you may need to reformat the dates.
trips <- read.socrata("https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p")
##'Vehicles' and 'Drivers' files are not used in this analysis, but code provided for future analysis.
#drivers <-read.socrata("https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Drivers/j6wf-834c")
#drivers <- as_tibble(drivers)
#vehicles <- read.socrata("https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Vehicles/bc6b-sq4u")
#vehicles <- as_tibble(vehicles)
##Connect EDAs to CCAs ----
## This connectes Chicago Community Areas to CMAP's Economically Disconnected Areas(EDAs).
##For more information on CMAP's EDAs see: https://datahub.cmap.illinois.gov/dataset/on-to-2050-layer-edas-disinvested-areas
ccas<-read.csv("ccas.csv", sep = ",", header = TRUE)
eda<-as.tibble(read.csv(file = "edas.csv", sep = ",", header = TRUE))
##Add some columns for summaries and removes holidays from data set (a little slow)----
trips <- as_tibble(trips) %>%
mutate(
pickup_census_tract = as.character(pickup_census_tract),
dropoff_census_tract = as.character(dropoff_census_tract),
trip_minutes = trip_seconds / 60,
start_hour = as.numeric(strftime(trip_start_timestamp, format="%H")),
start_minute = as.numeric(strftime(trip_start_timestamp, format="%M")),
start_time = (as.numeric(str_c(start_hour, start_minute,sep= "."))),
day_of_week = as.factor(strftime(trip_start_timestamp, format="%a")),
is_weekday = !day_of_week %in% c("Sat", "Sun"),
is_shared = trips_pooled > 1,
total_cost = fare + additional_charges) %>%
filter(trip_start_timestamp >= "2018-11-01 00:00:00" & trip_start_timestamp <= "2018-11-18 23:59:59" |
trip_start_timestamp >= "2018-11-26 00:00:00" & trip_start_timestamp <= "2018-12-16 23:59:59") #removes holidays
week<-c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
## Run this to save you data locally and speed up next analysis
#write_rds(trips, "trips.RData")
#trips <- read_rds("trips.RData") ##Excludes holidays
#Match trip origins to EDAs
trips["eda_start_tract"]<-eda$GEOID10[match(trips$pickup_census_tract, eda$GEOID10)]
trips["eda_cluster_start"]<-eda$cluster_name[match(trips$eda_start_tract, eda$GEOID10)]
trips["cluster_side_start"]<-eda$side[match(trips$eda_start_tract, eda$GEOID10)]
#Match trip destinations to EDAs
trips["eda_end_tract"]<-eda$GEOID10[match(trips$dropoff_census_tract, eda$GEOID10)]
trips["eda_cluster_end"]<-eda$cluster_name[match(trips$eda_end_tract, eda$GEOID10)]
trips["cluster_side_end"]<-eda$side[match(trips$eda_end_tract, eda$GEOID10)]
trips<-trips %>% mutate(is_eda = (!is.na(eda_start_tract) | !is.na(eda_end_tract)))
#Map of trips----
#Note, this section requires a Census API key.
# You can get one here https://api.census.gov/data/key_signup.html
# census_api_key("YOUR API KEY GOES HERE") #run this line with your key.
Cook_tract <- get_acs(geography = "tract", state = 17, county = "031", variables = "B19013_001", geometry = TRUE )
trip_count <- trips %>%
group_by(pickup_census_tract) %>%
summarise(pu_count = n())
Cook_tract <- left_join(Cook_tract, trip_count, by = c("GEOID"= "pickup_census_tract"))
#Note this map includes tracts outside Chicago. This data should probably be removed.
Cook_tract%>%
ggplot(aes(fill = pu_count)) +
geom_sf(color = NA) +
scale_fill_viridis_c(option = "magma")
#Trips by Time of Day----
days1<- #averages trips for days of the week that occur five times in the dataset timeframe
trips %>%
filter(day_of_week %in% c("Mon", "Tue", "Wed")) %>%
group_by(day_of_week, start_hour) %>%
summarize(count = n()) %>%
mutate(by_day = count /5) %>%
ungroup(day_of_week)
days2<- #averages trips for days of the week that occur six times in the dataset timeframe
trips %>%
filter(day_of_week %in% c("Thu", "Fri", "Sat", "Sun")) %>%
group_by(day_of_week, start_hour) %>%
summarize(count = n()) %>%
mutate(by_day = count /6) %>%
ungroup(day_of_week)
all_days<-full_join(days1, days2) %>%
mutate(day_of_week = factor(day_of_week, levels = week)) %>%
arrange(day_of_week) %>%
mutate(order = 1:n())
ggplot(all_days) +
geom_line(mapping = aes(x=order, y = by_day, color = day_of_week), size = 2) +
labs(x = "", y = "trips by hour", title = "Trip counts for average weekday and weekend",
subtitle = "Trips by hour, city of Chicago, Nov-Dec 2018 (excluding holidays)" )+
theme(axis.text.x=element_blank())
#Percent shared by time of day for EDAs and all trips outside EDAs (weekdays only) ----
eda_trip_shared<-trips %>%
select(cluster_side_start, cluster_side_end, is_shared, is_eda,is_weekday,start_hour) %>%
filter(is_eda==TRUE, is_weekday == TRUE) %>%
mutate(eda_side = paste(cluster_side_start,cluster_side_end), eda_side = gsub("NA","",eda_side),
eda_side = gsub(" ","", eda_side),eda_side = substr(eda_side,1,4),
eda_side_of_city = ifelse(grepl("Nort", eda_side),"North/Northwest", ifelse(grepl("West", eda_side), "West", ifelse(
grepl("Sout", eda_side), "South/Southwest", "other")))) %>% # This takes
#the origin EDA if the origin and destination
#are both in EDAs.
group_by(eda_side_of_city,is_shared, start_hour) %>%
summarize(count = n())
trips_shared<-trips %>%
select(is_shared, is_eda,is_weekday,start_hour) %>%
filter(is_eda==FALSE, is_weekday == TRUE) %>%
group_by(is_shared, start_hour) %>%
summarize(count = n())
eda_trip_shared<-eda_trip_shared %>%
full_join(trips_shared) %>%
spread(key=is_shared, value = count) %>%
select(eda_side = eda_side_of_city, start_hour, not_shared = "FALSE", shared = "TRUE") %>%
mutate(shared_pct = shared/(not_shared + shared))
ggplot(eda_trip_shared)+
geom_line(mapping = aes(x=start_hour, y = shared_pct, group = eda_side, color = eda_side), size = 1.5)+
labs(x = "Time of day", y = "percent rides shared", title = "Percent trips shared by EDAs, weekdays")+
scale_color_discrete(name = "",
labels = c("North/Northwest Side", "South/Southwest Side", "West Side", "Non EDA"))
#Median length by time of day for EDAs and all trips outisde EDAs (weekdays only) ----
eda_trip_length<-trips %>%
select(cluster_side_start, cluster_side_end, trip_minutes, trip_miles, is_eda,is_weekday,start_hour) %>%
filter(!is.na(trip_minutes), !is.na(trip_miles), is_eda==TRUE, is_weekday == TRUE) %>% #takes out records that
#are missing time or length
mutate(eda_side = paste(cluster_side_start,cluster_side_end), eda_side = gsub("NA","",eda_side),
eda_side = gsub(" ","", eda_side),eda_side = substr(eda_side,1,4),
eda_side2 = ifelse(grepl("Nort", eda_side),"North/Northwest", ifelse(grepl("West", eda_side), "West", ifelse(
grepl("Sout", eda_side), "South/Southwest", "other")))) %>%
group_by(eda_side2, start_hour, is_weekday) %>%
summarize(med_length = median(trip_miles), med_time = median(trip_minutes), count = n())
trip_length <-trips %>%
select(trip_minutes, trip_miles, is_eda,is_weekday,start_hour) %>%
filter(!is.na(trip_minutes), !is.na(trip_miles), is_eda==FALSE, is_weekday == TRUE) %>%
group_by(start_hour, is_weekday) %>%
summarize(med_length = median(trip_miles), med_time = median(trip_minutes), count = n())
eda_trip_length <- full_join(eda_trip_length, trip_length)
ggplot(eda_trip_length)+
geom_line(mapping = aes(x = start_hour, y = med_length, group = eda_side2, color = eda_side2), size = 2)+
labs(x = "time", y = "length (miles)", title = "Median weekday trip length for trips starting or ending in EDAs")+
scale_color_discrete(name = "",
labels = c("North/Northwest Side", "South/Southwest Side", "West Side", "Non EDA"))+
ylim(2,8)
#TNC Speed ----
speed<-trips %>%
select(start_hour, trip_miles, trip_minutes, is_weekday) %>%
filter(!is.na(trip_minutes), !is.na(trip_miles),is_weekday == TRUE, trip_minutes > 0, trip_miles > 0) %>%
mutate(hour = trip_minutes/60, mph = trip_miles/hour) %>%
group_by(start_hour) %>%
summarize(mph = mean(mph))
ggplot(speed)+
geom_line(mapping = aes(x = start_hour, y = mph), size = 2)+
labs(x = "time of day", y = "MPH", title = "Average speed, weekdays")