-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscript.py
125 lines (83 loc) · 4.3 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import sys
import yaml
import argparse
from pathlib import Path
import numpy as np
import pandas as pd
from munch import munchify, unmunchify
from stable_baselines3.common.monitor import Monitor
import coordination.evaluation.utils as utils
from coordination.environment.traffic import TrafficStub
from coordination.evaluation.monitor import CoordMonitor
from coordination.environment.deployment import ServiceCoordination
NUM_DAYS = 167
parser = argparse.ArgumentParser()
# arguments to specify the experiment, agent & evaluation
parser.add_argument('--experiment', type=str, default='./data/experiments/abilene/trace.yml')
parser.add_argument('--agent', type=str, default='./data/configurations/random.yml')
parser.add_argument('--episodes', type=int, default=10)
parser.add_argument('--logdir', type=str, default='./results/')
parser.add_argument('--seed', type=int, default=0)
# arguments to specify properties of simulation process
parser.add_argument('--oracle', dest='oracle', action='store_true')
if __name__ == '__main__':
args = parser.parse_args()
rng = np.random.default_rng(args.seed)
# load agent configuration from file
with open(args.agent, 'r') as file:
config = yaml.safe_load(file)
config = munchify(config)
# setup folders for logging & results
logdir = Path(args.logdir)
log_train, log_eval, log_results = logdir / 'train', logdir / 'evaluate', logdir / 'results'
log_train.mkdir(parents=True)
log_eval.mkdir(parents=True)
log_results.mkdir(parents=True)
# load experiment configuration from file
with open(Path(args.experiment)) as file:
exp = yaml.safe_load(file)
exp = munchify(exp)
# load VNF configurations from file
with open(exp.vnfs) as file:
vnfs = pd.read_csv(file)
vnfs = [config.to_dict() for _, config in vnfs.iterrows()]
# load service configurations from files
services = []
for service in exp.services:
with open(service) as file:
service = yaml.safe_load(file)
service = munchify(service)
services.append(service)
# save arguments, experiment configuration and agent configuration in result folder
with open(logdir / 'summary.yml', 'w') as file:
evaluation = {'experiment': unmunchify(exp), 'agent': unmunchify(config), 'args': vars(args)}
yaml.dump(evaluation, file)
for ep in range(args.episodes):
train_rng = np.random.default_rng(seed=sys.maxsize - ep)
sim_rng = np.random.default_rng(seed=sys.maxsize - ep)
eval_rng = np.random.default_rng(seed=ep)
# determine to-be-used day for endpoint probability matrix
eday = rng.integers(0, NUM_DAYS)
# determine to-be used days for arrival rates of each service; setup service traffic
sdays = rng.integers(0, NUM_DAYS, size=len(services) + 1)
train_process = utils.setup_process(train_rng, exp, services, eday, sdays, exp.load, exp.datarate, exp.latency)
eval_process = utils.setup_process(eval_rng, exp, services, eday, sdays, exp.load, exp.datarate, exp.latency)
eval_process = TrafficStub(eval_process.sample())
sim_process = utils.setup_sim_process(rng, sim_rng, exp, args, eval_process, services, eday, sdays, exp.sim_load, exp.sim_datarate, exp.sim_latency)
# setup training environment where traffic is seeded with `train_rng` random number generator
chains = [service.vnfs for service in services]
env = utils.setup_simulation(config, exp.overlay, train_process, vnfs, chains)
env.logger.disabled = True
monitor = Monitor(env, str(log_train))
# setup and train agent on environmnet according to configuration
config.policy.tensorboard_log = log_train
agent = utils.setup_agent(config, monitor, seed=ep)
agent.learn(**unmunchify(config.train))
# setup evaluation environment with traffic seeded by `eval_rng`
env.replace_process(eval_process)
monitor = CoordMonitor(ep, config.name, env, log_eval)
# evaluate agent on evaluation environment
ep_results = utils.evaluate_episode(agent, monitor, sim_process)
ep_results = {ep: ep_results}
utils.save_ep_results(ep_results, log_results)