-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathgraph_generator.py
122 lines (98 loc) · 4.04 KB
/
graph_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import networkx as nx
from geopy.distance import geodesic
import random
import numpy as np
import argparse
def generate_graph(file):
G = nx.Graph()
G.add_node(0, cpu=3, memory=10.0, bandwidth=40.0)
G.add_node(1, cpu=3, memory=25.0, bandwidth=40.0)
G.add_node(2, cpu=10, memory=50.0, bandwidth=40.0)
# G.add_node(3, cpu=1, memory=1.0, bandwidth=10.0)
# G.add_node(4, cpu=3, memory=30.0, bandwidth=40.0)
G.add_edge(0, 1, latency=50.0)
G.add_edge(1, 2, latency=50.0)
# G.add_edge(2, 3, latency=50.0)
# G.add_edge(3, 4, latency=500.0)
nx.write_gpickle(G, file)
def gml_reader(seed, cpu, memory, bandwidth, inputfile, outputfile):
SPEED_OF_LIGHT = 299792458 # meter per second
PROPAGATION_FACTOR = 0.77 # https://en.wikipedia.org/wiki/Propagation_delay
random.seed(seed)
file = inputfile
if not file.endswith(".gml"):
raise ValueError("{} is not a GraphML file".format(file))
network = nx.read_gml(file)
# TODO assume undirected graph??
newnetwork = nx.Graph()
mapping = dict()
for num, node in enumerate(network.nodes()):
mapping[node] = num
newnetwork.add_node(
num,
cpu=random.randint(*cpu),
memory=float(random.uniform(*memory)),
bandwidth=float(random.uniform(*bandwidth)),
)
for e in network.edges():
n1 = network.nodes(data=True)[e[0]]
n2 = network.nodes(data=True)[e[1]]
n1_coord = np.array((n1["graphics"].get("x"), n1["graphics"].get("y")))
n2_coord = np.array((n2["graphics"].get("x"), n2["graphics"].get("y")))
distance = np.linalg.norm(n1_coord - n2_coord)
distance = distance / 0.00062137 # miles->meter
delay = (
distance / SPEED_OF_LIGHT * 1000
) * PROPAGATION_FACTOR # in milliseconds
newnetwork.add_edge(mapping[e[0]], mapping[e[1]], latency=float(delay))
nx.write_gpickle(newnetwork, outputfile)
def graphml_reader(seed, cpu, memory, bandwidth, inputfile, outputfile):
SPEED_OF_LIGHT = 299792458 # meter per second
PROPAGATION_FACTOR = 0.77 # https://en.wikipedia.org/wiki/Propagation_delay
random.seed(seed)
# setting ranged for random values of the nodes
file = inputfile
if not file.endswith(".graphml"):
raise ValueError("{} is not a GraphML file".format(file))
network = nx.read_graphml(file, node_type=int)
# TODO assume undirected graph??
newnetwork = nx.Graph()
mapping = dict()
for num, node in enumerate(network.nodes()):
mapping[node] = num
newnetwork.add_node(
num,
cpu=random.randint(*cpu),
memory=float(random.uniform(*memory)),
bandwidth=float(random.uniform(*bandwidth)),
)
for e in network.edges():
n1 = network.nodes(data=True)[e[0]]
n2 = network.nodes(data=True)[e[1]]
n1_lat, n1_long = n1.get("Latitude"), n1.get("Longitude")
n2_lat, n2_long = n2.get("Latitude"), n2.get("Longitude")
distance = geodesic((n1_lat, n1_long), (n2_lat, n2_long)).meters # in meters
delay = (
distance / SPEED_OF_LIGHT * 1000
) * PROPAGATION_FACTOR # in milliseconds
newnetwork.add_edge(mapping[e[0]], mapping[e[1]], latency=float(delay))
nx.write_gpickle(newnetwork, outputfile)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, nargs="?", default=0)
parser.add_argument("--inputfile", type=str, nargs="?", const=1)
parser.add_argument(
"--outputfile", type=str, nargs="?", const=1, default=r"./data/network.gpickle"
)
args = parser.parse_args()
cpu = (1, 500)
memory = (1, 64)
bandwidth = (1, 1000)
if args.inputfile.endswith(".graphml"):
graphml_reader(
args.seed, cpu, memory, bandwidth, args.inputfile, args.outputfile
)
if args.inputfile.endswith(".gml"):
gml_reader(args.seed, cpu, memory, bandwidth, args.inputfile, args.outputfile)
else:
generate_graph(args.outputfile)