-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathscript.py
91 lines (73 loc) · 2.74 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import inspect
import logging
import argparse
from pathlib import Path
import stable_baselines3
from stable_baselines3.common.callbacks import EvalCallback
from nfvdeep.agent import baselines
from nfvdeep.agent.baselines import BaselineHeuristic
from nfvdeep.environment.env import Env
from nfvdeep.environment.arrival import *
from nfvdeep.environment.monitor import EvalLogCallback, StatsWrapper
parser = argparse.ArgumentParser()
parser.add_argument("--total_train_timesteps", type=int, default=1000000)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--overlay", type=str)
parser.add_argument("--requests", type=str)
parser.add_argument("--agent", type=str)
parser.add_argument("--n_eval_episodes", type=int, default=5)
parser.add_argument("--eval_freq", type=int, default=10000)
parser.add_argument("--output", type=str, required=True)
parser.add_argument("--debug", action="store_false")
args = parser.parse_args()
def main():
logging.basicConfig()
debug_level = logging.INFO if args.debug else logging.DEBUG
logging.getLogger().setLevel(debug_level)
Path(f"{args.output}/logs").mkdir(exist_ok=True, parents=True)
Path(f"{args.output}/evaluation").mkdir(exist_ok=True, parents=True)
with open(Path(args.requests), "r") as file:
arrival_config = json.load(file)
arrival_config["seed"] = args.seed
env = Env(args.overlay, arrival_config)
arrival_config["seed"] = args.seed + 1
eval_env = StatsWrapper(Env(args.overlay, arrival_config))
eval_log_callback = EvalLogCallback(log_path=f"{args.output}/evaluation")
eval_callback = EvalCallback(
eval_env,
n_eval_episodes=args.n_eval_episodes,
log_path=f"{args.output}/evaluation",
eval_freq=args.eval_freq,
deterministic=False,
render=False,
callback_after_eval=eval_log_callback,
)
if args.agent in [name for name, _ in inspect.getmembers(baselines)]:
policy = getattr(baselines, args.agent)
agent = BaselineHeuristic(
**{
"policy": policy,
"env": env,
"verbose": 1,
"tensorboard_log": f"{args.output}/logs",
}
)
elif args.agent in [name for name, _ in inspect.getmembers(stable_baselines3)]:
Agent = getattr(stable_baselines3, args.agent)
agent = Agent(
**{
"policy": "MlpPolicy",
"env": env,
"verbose": 1,
"tensorboard_log": f"{args.output}/logs",
}
)
else:
raise ValueError()
agent.learn(
total_timesteps=args.total_train_timesteps,
tb_log_name=args.agent,
callback=eval_callback,
)
if __name__ == "__main__":
main()