-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtune.py
256 lines (221 loc) · 7.58 KB
/
tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import argparse
import logging
import ray
import json
from pathlib import Path
from copy import deepcopy
from evaluation import evaluate_final_policy, safe_experiment
from nfvdeep.environment.env import Env
from nfvdeep.environment.arrival import *
from nfvdeep.agent.baselines import *
from nfvdeep.agent.logging import MetricLoggingCallback, NFVDeepMonitor
from nfvdeep.tuning import OptimizationCallback
from ax.service.ax_client import AxClient
from ray.tune.suggest.ax import AxSearch
from ray.tune.schedulers import ASHAScheduler
from stable_baselines3.common.env_checker import check_env
from stable_baselines3 import A2C, PPO, DQN
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.callbacks import EveryNTimesteps
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# arguments to specify parameters of the experiment evaluation
parser.add_argument(
"--total_train_timesteps",
type=int,
nargs="?",
const=1,
default=1000000,
help="Number of training steps for the agent",
)
parser.add_argument(
"--debug",
action="store_false",
help="Whether to enable debugging logs of the environment",
)
parser.add_argument(
"--overlay", type=str, help="Path to overlay graph for the environment"
)
parser.add_argument(
"--requests",
type=str,
help="Either path to request file or key word for stochastic arrival process",
)
parser.add_argument(
"--agent", type=str, help="Whether to use a RL agent or a baseline"
)
parser.add_argument(
"--logs",
type=str,
nargs="?",
const=1,
default=r"./logs",
help="Path of tensorboard logs",
)
# arguments to specify ray's hyperparameter optimization procedure
parser.add_argument(
"--sample_timesteps",
type=int,
nargs="?",
const=1,
default=200000,
help="Number of timesteps used to train intermediate configurations",
)
parser.add_argument(
"--report_interval",
type=int,
nargs="?",
const=1,
default=10000,
help="Interval between reportings from callback (in timesteps)",
)
parser.add_argument(
"--ray_eval_episodes",
type=int,
nargs="?",
const=1,
default=1,
help="Maximum number of episodes for final (deterministic) evaluation",
)
parser.add_argument(
"--ray_tune_samples",
type=int,
nargs="?",
const=1,
default=128,
help="Number of trials for hyperparameter optimization",
)
parser.add_argument(
"--ray_cpus",
type=int,
nargs="?",
const=1,
default=16,
help="Number of cpus ray tune will use for the optimization",
)
# arguments to specify the final policy's evaluation
parser.add_argument(
"--eval_episodes",
type=int,
default=20,
help="Number of evaluation steps for one trained agent",
)
parser.add_argument(
"--trials", type=int, default=10, help="Number of trials evaluating the agent"
)
parser.add_argument(
"--output",
type=str,
required=True,
help="Path to the folder where all results will be stored at",
)
args = parser.parse_args()
# set logging level according to --debug
logging.basicConfig()
debug_level = logging.INFO if args.debug else logging.DEBUG
logging.getLogger().setLevel(debug_level)
# Create log dir & monitor training so that episode rewards are logged
os.makedirs(args.logs, exist_ok=True)
# Create agent from experiment configuration
if args.agent == "Random":
agent = BaselineHeuristic
policy = RandomPolicy
elif args.agent == "FirstFit_1":
agent = BaselineHeuristic
policy = FirstFitPolicy
elif args.agent == "FirstFit_2":
agent = BaselineHeuristic
policy = FirstFitPolicy2
elif args.agent == "FirstFit_3":
agent = BaselineHeuristic
policy = FirstFitPolicy3
elif args.agent == "FirstFit_4":
agent = BaselineHeuristic
policy = FirstFitPolicy4
elif args.agent == "A2C":
agent = A2C
policy = "MlpPolicy"
elif args.agent == "PPO":
agent = PPO
policy = "MlpPolicy"
elif args.agent == "DQN":
agent = DQN
policy = "MlpPolicy"
else:
raise ValueError("An unknown agent was specified")
EVAL_EPISODES = args.ray_eval_episodes
TOTAL_TIMESTEPS = args.total_train_timesteps
RAY_TUNE_SAMPLES = args.ray_tune_samples
# load parameter optimization space from file
with open("./nfvdeep/spaces/{}_space.json".format(args.agent), "r") as search_space:
parameters = json.load(search_space)
# modifiy name for experiment generation
args.agent = "(tuned) " + args.agent
results = dict()
# load the arrival processe's properties
with open(Path(args.requests), "r") as file:
arrival_config = json.load(file)
for trial in range(args.trials):
# create the network's overlay structure & incoming requests for the environment
arrival_config["seed"] = trial
base_env = Env(args.overlay, arrival_config)
# Define objective function for hyperparameter tuning
def evaluate_objective(config):
tune_env = deepcopy(base_env)
tune_monitor = OptimizationCallback(tune_env, EVAL_EPISODES, True)
monitor_callback = EveryNTimesteps(
n_steps=args.report_interval, callback=tune_monitor
)
tune_agent = agent("MlpPolicy", tune_env, **config)
tune_agent.learn(
total_timesteps=args.sample_timesteps, callback=monitor_callback
)
ax_client = AxClient(enforce_sequential_optimization=False)
ax_client.create_experiment(
name="tune_RL",
parameters=parameters,
objective_name="episode_reward_mean",
minimize=False,
overwrite_existing_experiment=True,
)
# add scheduling of configurations, i.e. intensify solely
asha_scheduler = ASHAScheduler(
time_attr="training_iteration", metric="episode_reward_mean", mode="max"
)
ray.init(num_cpus=args.ray_cpus)
ray.tune.run(
evaluate_objective,
num_samples=RAY_TUNE_SAMPLES,
search_alg=AxSearch(ax_client),
scheduler=asha_scheduler,
verbose=2,
)
# get best parameters, retrain agent and log results for best agent
best_parameters, values = ax_client.get_best_parameters()
ray.shutdown()
env = NFVDeepMonitor(base_env, args.logs)
callback = MetricLoggingCallback()
eval_agent = agent(
**{
"policy": policy,
"env": env,
"verbose": 1,
"tensorboard_log": args.logs,
**best_parameters,
}
)
tb_log_name = (
eval_agent.__class__.__name__
if isinstance(policy, str)
else policy.__name__
)
eval_agent.learn(
total_timesteps=args.total_train_timesteps,
tb_log_name=tb_log_name,
callback=callback,
)
# evaluate final policy and log performances
results[trial] = evaluate_final_policy(args.eval_episodes, eval_agent, env)
# save experiments to disk at specified output path
safe_experiment(results, vars(args))