forked from NetManAIOps/OmniAnomaly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preprocess.py
212 lines (179 loc) · 8.56 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import ast
import csv
import os
import sys
from pickle import dump
import numpy as np
from tfsnippet.utils import makedirs
output_folder = 'processed'
makedirs(output_folder, exist_ok=True)
def load_and_save(category, filename, dataset, dataset_folder):
temp = np.genfromtxt(os.path.join(dataset_folder, category, filename),
dtype=np.float32,
delimiter=',')
print(dataset, category, filename, temp.shape)
with open(os.path.join(output_folder, dataset + "_" + category + ".pkl"), "wb") as file:
dump(temp, file)
def load_data(dataset):
if dataset == 'SMD':
dataset_folder = 'ServerMachineDataset'
file_list = os.listdir(os.path.join(dataset_folder, "train"))
for filename in file_list:
if filename.endswith('.txt'):
load_and_save('train', filename, filename.strip('.txt'), dataset_folder)
load_and_save('test', filename, filename.strip('.txt'), dataset_folder)
load_and_save('test_label', filename, filename.strip('.txt'), dataset_folder)
elif dataset == "SWAT":
train_path = "../datasets/SWAT/SWaT_Dataset_Normal_v1.csv"
test_path = "../datasets/SWAT/SWaT_Dataset_Attack_v0.csv"
with open(train_path, 'r')as file:
csv_reader = csv.reader(file, delimiter=',')
res_train = [row[1:-1] for row in csv_reader][2:]
row_train = len(res_train)
traindata = np.array(res_train, dtype=np.float32)[21600:]
print(traindata.shape)
# traindata = np.delete(traindata, [5,10], axis=1)
# data_all = np.concatenate((traindata, testdata), axis=0)
epsilo = 0.001
data_min = np.min(traindata, axis=0)
data_max = np.max(traindata, axis=0)+epsilo
for i in range(len(data_max)):
if data_max[i] - data_min[i] < 10 * epsilo:
data_min[i] = data_max[i]
data_max[i] = 1 + data_max[i]
mu = np.mean(traindata, axis=0)
sigma = np.std(traindata, axis=0)
epsilo = 0.01
for i in range(len(sigma)):
if sigma[i] < epsilo:
sigma[i] = 1
train_ = (traindata - data_min)/(data_max - data_min)
# rawdata = (traindata - mu) / sigma
print("train shape ", train_.shape)
with open(test_path, 'r')as file:
csv_reader = csv.reader(file, delimiter=',')
res_test = [row[1:-1] for row in csv_reader][1:]
row_test = len(res_test)
testdata = np.array(res_test, dtype=np.float32)
# testdata = np.delete(testdata, [5,10], axis=1)
print(testdata.shape)
test_ = (testdata - data_min)/(data_max - data_min)
# rawdata = (testdata - mu) / sigma
print("test shape ", test_.shape)
test_ = np.clip(test_, a_min=-1.0, a_max=3.0)
label_path = "../datasets/SWAT/SWaT_Dataset_Attack_v0.csv"
with open(label_path, 'r')as file:
csv_reader = csv.reader(file, delimiter=',')
res = [row[-1]for row in csv_reader][1:]
label_ = [0 if i == "Normal" else 1 for i in res]
label_ = np.array(label_)
with open(os.path.join(output_folder, dataset + "_" + 'test_label' + ".pkl"), "wb") as file:
dump(label_, file)
with open(os.path.join(output_folder, dataset + "_" + 'test' + ".pkl"), "wb") as file:
dump(test_, file)
with open(os.path.join(output_folder, dataset + "_" + 'train' + ".pkl"), "wb") as file:
dump(train_, file)
elif dataset == "WADI":
nan_cols = []
train_path = "../datasets/WADIA2/WADI_14days_new.csv"
with open(train_path, "r") as file:
csv_reader = csv.reader(file, delimiter=',')
res_train = [row[3:] for row in csv_reader][1:]
res_train = np.array(res_train)[21600:]
row_train, col_train = len(res_train), len(res_train[0])
for j in range(res_train.shape[1]):
for i in range(res_train.shape[0]):
if res_train[i][j] == "1.#QNAN" or res_train[i][j] == '':
nan_cols.append(j)
break
# len(nan_cols) == 9
res_train = np.delete(res_train, nan_cols, axis=1)
res_train = res_train.astype(np.float32)
traindata = res_train
test_path = "../datasets/WADIA2/WADI_attackdataLABLE.csv"
epsilo = 0.001
data_min = np.min(traindata, axis=0)
data_max = np.max(traindata, axis=0)+epsilo
for i in range(len(data_max)):
if data_max[i] - data_min[i] < 10 * epsilo:
data_min[i] = data_max[i]
data_max[i] = 1 + data_max[i]
traindata = (traindata - data_min)/(data_max - data_min)
train_ = traindata
print("train shape ", train_.shape)
with open(test_path, 'r') as file:
csv_reader = csv.reader(file, delimiter=',')
res_test = [row[3:-1] for row in csv_reader][2:]
res_test = np.array(res_test)
row_test, col_test = len(res_test), len(res_test[0])
for i in range(row_test):
for j in range(col_test):
if res_test[i][j] == '':
res_test[i][j] = 0
res_test = np.delete(res_test, nan_cols, axis=1)
res_test = res_test.astype(np.float32)
test_ = (res_test - data_min)/(data_max - data_min)
print("test shape ", test_.shape)
test_ = np.clip(test_, a_min=-1.0, a_max=2.0)
label_path = "../datasets/WADIA2/WADI_attackdataLABLE.csv"
with open(label_path, 'r') as file:
csv_reader = csv.reader(file, delimiter=',')
res = [row[-1] for row in csv_reader][2:]
label_ = np.array(res, dtype=np.float32)
for i in range(len(label_)):
if label_[i] <= 0:
label_[i] = 1
else:
label_[i] = 0
with open(os.path.join(output_folder, dataset + "_" + 'test_label' + ".pkl"), "wb") as file:
dump(label_, file)
with open(os.path.join(output_folder, dataset + "_" + 'test' + ".pkl"), "wb") as file:
dump(test_, file)
with open(os.path.join(output_folder, dataset + "_" + 'train' + ".pkl"), "wb") as file:
dump(train_, file)
elif dataset == 'SMAP' or dataset == 'MSL':
dataset_folder = 'data'
with open(os.path.join(dataset_folder, 'labeled_anomalies.csv'), 'r') as file:
csv_reader = csv.reader(file, delimiter=',')
res = [row for row in csv_reader][1:]
res = sorted(res, key=lambda k: k[0])
label_folder = os.path.join(dataset_folder, 'test_label')
makedirs(label_folder, exist_ok=True)
data_info = [row for row in res if row[1] == dataset and row[0] != 'P-2']
labels = []
for row in data_info:
anomalies = ast.literal_eval(row[2])
length = int(row[-1])
label = np.zeros([length], dtype=np.bool)
for anomaly in anomalies:
label[anomaly[0]:anomaly[1] + 1] = True
labels.extend(label)
labels = np.asarray(labels)
print(dataset, 'test_label', labels.shape)
with open(os.path.join(output_folder, dataset + "_" + 'test_label' + ".pkl"), "wb") as file:
dump(labels, file)
def concatenate_and_save(category):
data = []
for row in data_info:
filename = row[0]
temp = np.load(os.path.join(dataset_folder, category, filename + '.npy'))
data.extend(temp)
data = np.asarray(data)
print(dataset, category, data.shape)
with open(os.path.join(output_folder, dataset + "_" + category + ".pkl"), "wb") as file:
dump(data, file)
for c in ['train', 'test']:
concatenate_and_save(c)
if __name__ == '__main__':
datasets = ['SMD', 'WADI', 'SWAT']
commands = sys.argv[1:]
load = []
if len(commands) > 0:
for d in commands:
if d in datasets:
load_data(d)
else:
print("""
Usage: python data_preprocess.py <datasets>
where <datasets> should be one of ['SMD', 'SMAP', 'MSL']
""")