-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstockchart.py
215 lines (154 loc) · 6.29 KB
/
stockchart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import pandas as pd
import numpy as np
import streamlit as st
from yahoofinancials import YahooFinancials
from datetime import datetime, timedelta
import matplotlib.pyplot as pt
import RSI
import file
import yfinance as yf
def basic_data(ticker):
#yahoo_financials = YahooFinancials(ticker)
yahoo_financials= yf.Ticker(ticker)
print(yahoo_financials.info)
ps = yahoo_financials.info['priceToSalesTrailing12Months']
if ps is None:
ps = np.nan
pe = yahoo_financials.info['forwardPE']
if pe is None:
pe = np.nan
mktcap = yahoo_financials.info['marketCap']
try:
divd = yahoo_financials.info['dividendYield'] * 100
if divd is None:
divd = np.nan
except:
divd = np.nan
high = yahoo_financials.info['fiftyTwoWeekHigh']
low = yahoo_financials.info['fiftyTwoWeekLow']
try:
beta = yahoo_financials.info['beta']
if beta is None:
beta = np.nan
except:
beta = np.nan
pb = yahoo_financials.info['priceToBook']
if pb is None:
pb = np.nan
short = yahoo_financials.info['shortPercentOfFloat'] * 100
if short is None:
short = np.nan
df = {'P/S': [ps],
'P/E': [pe],
'P/B': [pb],
'Beta': [beta],
'Mktcap(M)': [mktcap/1000000],
'Dividend yield %': [divd],
'Yearly High': [high],
'Yearly Low': [low],
'Shares Short %': [short]
}
index = ['Data']
df = pd.DataFrame(data=df,index=index)
st.write("General Market Data")
st.table(df.style.format("{:.2f}"))
def display_stock(period_view, data, rsi_period, stock_ticker, mv_fast, mv_slow):
if(period_view==True):
period_options = ['1y', '3mo', '6mo','ytd','2y', '5y', '10y', 'max']
period = st.sidebar.selectbox("period", period_options)
if (period == '3mo' or '6mo' or '1y' or 'ytd' or '2y' or '5y' or '10y' or 'max'):
interval_options = ['1d', '5d', '1wk', '1mo', '3mo']
interval = st.sidebar.selectbox("interval", interval_options)
plot_price_volume(period,interval,data,rsi_period, stock_ticker,mv_fast, mv_slow)
elif (period_view==False):
start = st.sidebar.text_input("start", datetime.strftime(datetime.today()-timedelta(365),"%Y-%m-%d"))
end = st.sidebar.text_input("end", datetime.strftime(datetime.today(),"%Y-%m-%d"))
display_price_volume(data,start,end,rsi_period,stock_ticker, mv_fast, mv_slow)
def display_price_volume(data,start,end,rsi_period,stock_ticker, mv_fast, mv_slow):
interval_options = ['1d', '5d', '1wk', '1mo']
interval = st.sidebar.selectbox("interval", interval_options)
if(end == ''):
plot_price_volume_3(start,interval,data,rsi_period,stock_ticker, mv_fast, mv_slow)
else:
plot_price_volume_2(start,end,interval,data,rsi_period,stock_ticker, mv_fast, mv_slow)
def plot_price_volume(period, interval, data, rsi_period, stock_ticker, mv_fast, mv_slow):
stock_data = data.history(period = period, interval = interval)
st.subheader('Close Price')
st.line_chart(stock_data.Close)
basic_data(stock_ticker)
st.subheader('Volume')
st.line_chart(stock_data.Volume)
stock_data = RSI.RSI_function(stock_data, rsi_period)
st.subheader("RSI Data")
st.line_chart(stock_data.RSI)
fig = pt.figure(figsize=(8, 5))
fast = stock_data.Close.rolling(window = int(mv_fast)).mean()
slow = stock_data.Close.rolling(window = int (mv_slow)).mean()
pt.plot(stock_data.Close, label='Close Price')
pt.plot(fast,label = 'mvag ' + mv_fast + ' days')
pt.plot(slow, label ='mvag ' + mv_slow + ' days')
pt.legend()
st.subheader("Moving Averages")
st.pyplot(fig)
stock_data = stock_data.reset_index()
stock_data.Date = convert_datetime(stock_data)
stock_data = stock_data.iloc[::-1]
file.download_interface(stock_data,stock_ticker)
st.write(stock_data)
def plot_price_volume_2(start, end, interval, data, rsi_period, stock_ticker, mv_fast, mv_slow):
stock_data = data.history(start = start, end = end, interval = interval)
st.subheader('Close Price')
st.line_chart(stock_data.Close)
basic_data(stock_ticker)
st.subheader('Volume')
st.line_chart(stock_data.Volume)
stock_data = RSI.RSI_function(stock_data, rsi_period)
st.subheader("RSI Data")
st.line_chart(stock_data.RSI)
fig = pt.figure(figsize=(8, 5))
fast = stock_data.Close.rolling(window = int(mv_fast)).mean()
slow = stock_data.Close.rolling(window = int (mv_slow)).mean()
pt.plot(stock_data.Close, label='Close Price')
pt.plot(fast,label = 'mvag ' + mv_fast + ' days')
pt.plot(slow, label ='mvag ' + mv_slow + ' days')
pt.legend()
st.subheader("Moving Averages")
st.pyplot(fig)
stock_data = stock_data.reset_index()
stock_data.Date = convert_datetime(stock_data)
st.subheader("Stock Data")
stock_data = stock_data.iloc[::-1]
st.write(stock_data)
file.download_interface(stock_data,stock_ticker)
def plot_price_volume_3(start,interval,data, rsi_period, stock_ticker, mv_fast, mv_slow):
stock_data = data.history(start = start, interval = interval)
st.subheader('Close Price')
st.line_chart(stock_data.Close)
st.subheader("Basic Data")
basic_data(stock_ticker)
st.subheader('Volume')
st.line_chart(stock_data.Volume)
stock_data = RSI.RSI_function(stock_data, rsi_period)
st.subheader("RSI Data")
st.line_chart(stock_data.RSI)
fig = pt.figure(figsize=(8, 5))
fast = stock_data.Close.rolling(window = int(mv_fast)).mean()
slow = stock_data.Close.rolling(window = int (mv_slow)).mean()
pt.plot(stock_data.Close, label='Close Price')
pt.plot(fast,label = 'mvag ' + mv_fast + ' days')
pt.plot(slow, label ='mvag ' + mv_slow + ' days')
pt.legend()
st.pyplot(fig)
stock_data = stock_data.reset_index()
stock_data.Date = convert_datetime(stock_data)
stock_data = stock_data.iloc[::-1]
st.subheader("Stock Data")
st.write(stock_data)
file.download_interface(stock_data,stock_ticker)
def convert_datetime(stock_data):
dates = []
for date in stock_data.Date:
date_obj = date.to_pydatetime()
dt = date_obj.strftime("%Y-%m-%d")
dates.append(dt)
return dates