-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrmt.py
601 lines (517 loc) · 21.9 KB
/
rmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import torch
import torch.nn as nn
from torch.nn.common_types import _size_2_t
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import math
import torch
import torch.nn.functional as F
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_
from timm.models.vision_transformer import VisionTransformer
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
from typing import Tuple, Union
from functools import partial
__all__ = ['RMT_T', 'RMT_S', 'RMT_B', 'RMT_L']
class DWConv2d(nn.Module):
def __init__(self, dim, kernel_size, stride, padding):
super().__init__()
self.conv = nn.Conv2d(dim, dim, kernel_size, stride, padding, groups=dim)
def forward(self, x: torch.Tensor):
'''
x: (b h w c)
'''
x = x.permute(0, 3, 1, 2) #(b c h w)
x = self.conv(x) #(b c h w)
x = x.permute(0, 2, 3, 1) #(b h w c)
return x
class RelPos2d(nn.Module):
def __init__(self, embed_dim, num_heads, initial_value, heads_range):
'''
recurrent_chunk_size: (clh clw)
num_chunks: (nch ncw)
clh * clw == cl
nch * ncw == nc
default: clh==clw, clh != clw is not implemented
'''
super().__init__()
angle = 1.0 / (10000 ** torch.linspace(0, 1, embed_dim // num_heads // 2))
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
self.initial_value = initial_value
self.heads_range = heads_range
self.num_heads = num_heads
decay = torch.log(1 - 2 ** (-initial_value - heads_range * torch.arange(num_heads, dtype=torch.float) / num_heads))
self.register_buffer('angle', angle)
self.register_buffer('decay', decay)
def generate_2d_decay(self, H: int, W: int):
'''
generate 2d decay mask, the result is (HW)*(HW)
'''
index_h = torch.arange(H).to(self.decay)
index_w = torch.arange(W).to(self.decay)
grid = torch.meshgrid([index_h, index_w])
grid = torch.stack(grid, dim=-1).reshape(H*W, 2) #(H*W 2)
mask = grid[:, None, :] - grid[None, :, :] #(H*W H*W 2)
mask = (mask.abs()).sum(dim=-1)
mask = mask * self.decay[:, None, None] #(n H*W H*W)
return mask
def generate_1d_decay(self, l: int):
'''
generate 1d decay mask, the result is l*l
'''
index = torch.arange(l).to(self.decay)
mask = index[:, None] - index[None, :] #(l l)
mask = mask.abs() #(l l)
mask = mask * self.decay[:, None, None] #(n l l)
return mask
def forward(self, slen: Tuple[int], activate_recurrent=False, chunkwise_recurrent=False):
'''
slen: (h, w)
h * w == l
recurrent is not implemented
'''
if activate_recurrent:
retention_rel_pos = self.decay.exp()
elif chunkwise_recurrent:
mask_h = self.generate_1d_decay(slen[0])
mask_w = self.generate_1d_decay(slen[1])
retention_rel_pos = (mask_h, mask_w)
else:
mask = self.generate_2d_decay(slen[0], slen[1]) #(n l l)
retention_rel_pos = mask
return retention_rel_pos
class MaSAd(nn.Module):
def __init__(self, embed_dim, num_heads, value_factor=1):
super().__init__()
self.factor = value_factor
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = self.embed_dim * self.factor // num_heads
self.key_dim = self.embed_dim // num_heads
self.scaling = self.key_dim ** -0.5
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.v_proj = nn.Linear(embed_dim, embed_dim * self.factor, bias=True)
self.lepe = DWConv2d(embed_dim, 5, 1, 2)
self.out_proj = nn.Linear(embed_dim*self.factor, embed_dim, bias=True)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_normal_(self.q_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.k_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.v_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.out_proj.weight)
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(self, x: torch.Tensor, rel_pos, chunkwise_recurrent=False, incremental_state=None):
'''
x: (b h w c)
mask_h: (n h h)
mask_w: (n w w)
'''
bsz, h, w, _ = x.size()
mask_h, mask_w = rel_pos
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
lepe = self.lepe(v)
k *= self.scaling
qr = q.view(bsz, h, w, self.num_heads, self.key_dim).permute(0, 3, 1, 2, 4) #(b n h w d1)
kr = k.view(bsz, h, w, self.num_heads, self.key_dim).permute(0, 3, 1, 2, 4) #(b n h w d1)
'''
qr: (b n h w d1)
kr: (b n h w d1)
v: (b h w n*d2)
'''
qr_w = qr.transpose(1, 2) #(b h n w d1)
kr_w = kr.transpose(1, 2) #(b h n w d1)
v = v.reshape(bsz, h, w, self.num_heads, -1).permute(0, 1, 3, 2, 4) #(b h n w d2)
qk_mat_w = qr_w @ kr_w.transpose(-1, -2) #(b h n w w)
qk_mat_w = qk_mat_w + mask_w #(b h n w w)
qk_mat_w = torch.softmax(qk_mat_w, -1) #(b h n w w)
v = torch.matmul(qk_mat_w, v) #(b h n w d2)
qr_h = qr.permute(0, 3, 1, 2, 4) #(b w n h d1)
kr_h = kr.permute(0, 3, 1, 2, 4) #(b w n h d1)
v = v.permute(0, 3, 2, 1, 4) #(b w n h d2)
qk_mat_h = qr_h @ kr_h.transpose(-1, -2) #(b w n h h)
qk_mat_h = qk_mat_h + mask_h #(b w n h h)
qk_mat_h = torch.softmax(qk_mat_h, -1) #(b w n h h)
output = torch.matmul(qk_mat_h, v) #(b w n h d2)
output = output.permute(0, 3, 1, 2, 4).flatten(-2, -1) #(b h w n*d2)
output = output + lepe
output = self.out_proj(output)
return output
class MaSA(nn.Module):
def __init__(self, embed_dim, num_heads, value_factor=1):
super().__init__()
self.factor = value_factor
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = self.embed_dim * self.factor // num_heads
self.key_dim = self.embed_dim // num_heads
self.scaling = self.key_dim ** -0.5
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.v_proj = nn.Linear(embed_dim, embed_dim * self.factor, bias=True)
self.lepe = DWConv2d(embed_dim, 5, 1, 2)
self.out_proj = nn.Linear(embed_dim*self.factor, embed_dim, bias=True)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_normal_(self.q_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.k_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.v_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.out_proj.weight)
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(self, x: torch.Tensor, rel_pos, chunkwise_recurrent=False, incremental_state=None):
'''
x: (b h w c)
rel_pos: mask: (n l l)
'''
bsz, h, w, _ = x.size()
mask = rel_pos
assert h*w == mask.size(1)
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
lepe = self.lepe(v)
k *= self.scaling
qr = q.view(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4) #(b n h w d1)
kr = k.view(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4) #(b n h w d1)
qr = qr.flatten(2, 3) #(b n l d1)
kr = kr.flatten(2, 3) #(b n l d1)
vr = v.reshape(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4) #(b n h w d2)
vr = vr.flatten(2, 3) #(b n l d2)
qk_mat = qr @ kr.transpose(-1, -2) #(b n l l)
qk_mat = qk_mat + mask #(b n l l)
qk_mat = torch.softmax(qk_mat, -1) #(b n l l)
output = torch.matmul(qk_mat, vr) #(b n l d2)
output = output.transpose(1, 2).reshape(bsz, h, w, -1) #(b h w n*d2)
output = output + lepe
output = self.out_proj(output)
return output
class FeedForwardNetwork(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
activation_fn=F.gelu,
dropout=0.0,
activation_dropout=0.0,
layernorm_eps=1e-6,
subln=False,
subconv=False
):
super().__init__()
self.embed_dim = embed_dim
self.activation_fn = activation_fn
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
self.dropout_module = torch.nn.Dropout(dropout)
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
self.ffn_layernorm = nn.LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None
self.dwconv = DWConv2d(ffn_dim, 3, 1, 1) if subconv else None
def reset_parameters(self):
self.fc1.reset_parameters()
self.fc2.reset_parameters()
if self.ffn_layernorm is not None:
self.ffn_layernorm.reset_parameters()
def forward(self, x: torch.Tensor):
'''
x: (b h w c)
'''
x = self.fc1(x)
x = self.activation_fn(x)
x = self.activation_dropout_module(x)
if self.dwconv is not None:
residual = x
x = self.dwconv(x)
x = x + residual
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = self.dropout_module(x)
return x
class RetBlock(nn.Module):
def __init__(self, retention: str, embed_dim: int, num_heads: int, ffn_dim: int, drop_path=0., layerscale=False, layer_init_values=1e-5):
super().__init__()
self.layerscale = layerscale
self.embed_dim = embed_dim
self.retention_layer_norm = nn.LayerNorm(self.embed_dim, eps=1e-6)
assert retention in ['chunk', 'whole']
if retention == 'chunk':
self.retention = MaSAd(embed_dim, num_heads)
else:
self.retention = MaSA(embed_dim, num_heads)
self.drop_path = DropPath(drop_path)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=1e-6)
self.ffn = FeedForwardNetwork(embed_dim, ffn_dim)
self.pos = DWConv2d(embed_dim, 3, 1, 1)
if layerscale:
self.gamma_1 = nn.Parameter(layer_init_values * torch.ones(1, 1, 1, embed_dim),requires_grad=True)
self.gamma_2 = nn.Parameter(layer_init_values * torch.ones(1, 1, 1, embed_dim),requires_grad=True)
def forward(
self,
x: torch.Tensor,
incremental_state=None,
chunkwise_recurrent=False,
retention_rel_pos=None
):
x = x + self.pos(x)
if self.layerscale:
x = x + self.drop_path(self.gamma_1 * self.retention(self.retention_layer_norm(x), retention_rel_pos, chunkwise_recurrent, incremental_state))
x = x + self.drop_path(self.gamma_2 * self.ffn(self.final_layer_norm(x)))
else:
x = x + self.drop_path(self.retention(self.retention_layer_norm(x), retention_rel_pos, chunkwise_recurrent, incremental_state))
x = x + self.drop_path(self.ffn(self.final_layer_norm(x)))
return x
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, out_dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Conv2d(dim, out_dim, 3, 2, 1)
self.norm = nn.BatchNorm2d(out_dim)
def forward(self, x):
'''
x: B H W C
'''
x = x.permute(0, 3, 1, 2).contiguous() #(b c h w)
x = self.reduction(x) #(b oc oh ow)
x = self.norm(x)
x = x.permute(0, 2, 3, 1) #(b oh ow oc)
return x
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, embed_dim, out_dim, depth, num_heads,
init_value: float, heads_range: float,
ffn_dim=96., drop_path=0., norm_layer=nn.LayerNorm, chunkwise_recurrent=False,
downsample: PatchMerging=None, use_checkpoint=False,
layerscale=False, layer_init_values=1e-5):
super().__init__()
self.embed_dim = embed_dim
self.depth = depth
self.use_checkpoint = use_checkpoint
self.chunkwise_recurrent = chunkwise_recurrent
if chunkwise_recurrent:
flag = 'chunk'
else:
flag = 'whole'
self.Relpos = RelPos2d(embed_dim, num_heads, init_value, heads_range)
# build blocks
self.blocks = nn.ModuleList([
RetBlock(flag, embed_dim, num_heads, ffn_dim,
drop_path[i] if isinstance(drop_path, list) else drop_path, layerscale, layer_init_values)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=embed_dim, out_dim=out_dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
b, h, w, d = x.size()
rel_pos = self.Relpos((h, w), chunkwise_recurrent=self.chunkwise_recurrent)
for blk in self.blocks:
if self.use_checkpoint:
tmp_blk = partial(blk, incremental_state=None, chunkwise_recurrent=self.chunkwise_recurrent, retention_rel_pos=rel_pos)
x = checkpoint.checkpoint(tmp_blk, x)
else:
x = blk(x, incremental_state=None, chunkwise_recurrent=self.chunkwise_recurrent, retention_rel_pos=rel_pos)
if self.downsample is not None:
x = self.downsample(x)
return x
class LayerNorm2d(nn.Module):
def __init__(self, dim):
super().__init__()
self.norm = nn.LayerNorm(dim, eps=1e-6)
def forward(self, x: torch.Tensor):
'''
x: (b c h w)
'''
x = x.permute(0, 2, 3, 1).contiguous() #(b h w c)
x = self.norm(x) #(b h w c)
x = x.permute(0, 3, 1, 2).contiguous()
return x
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Sequential(
nn.Conv2d(in_chans, embed_dim//2, 3, 2, 1),
nn.BatchNorm2d(embed_dim//2),
nn.GELU(),
nn.Conv2d(embed_dim//2, embed_dim//2, 3, 1, 1),
nn.BatchNorm2d(embed_dim//2),
nn.GELU(),
nn.Conv2d(embed_dim//2, embed_dim, 3, 2, 1),
nn.BatchNorm2d(embed_dim),
nn.GELU(),
nn.Conv2d(embed_dim, embed_dim, 3, 1, 1),
nn.BatchNorm2d(embed_dim)
)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).permute(0, 2, 3, 1) #(b h w c)
return x
class VisRetNet(nn.Module):
def __init__(self, in_chans=3, num_classes=1000,
embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
init_values=[1, 1, 1, 1], heads_ranges=[3, 3, 3, 3], mlp_ratios=[3, 3, 3, 3], drop_path_rate=0.1, norm_layer=nn.LayerNorm,
patch_norm=True, use_checkpoints=[False, False, False, False], chunkwise_recurrents=[True, True, False, False],
layerscales=[False, False, False, False], layer_init_values=1e-6):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dims[0]
self.patch_norm = patch_norm
self.num_features = embed_dims[-1]
self.mlp_ratios = mlp_ratios
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0],
norm_layer=norm_layer if self.patch_norm else None)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
embed_dim=embed_dims[i_layer],
out_dim=embed_dims[i_layer+1] if (i_layer < self.num_layers - 1) else None,
depth=depths[i_layer],
num_heads=num_heads[i_layer],
init_value=init_values[i_layer],
heads_range=heads_ranges[i_layer],
ffn_dim=int(mlp_ratios[i_layer]*embed_dims[i_layer]),
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
chunkwise_recurrent=chunkwise_recurrents[i_layer],
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoints[i_layer],
layerscale=layerscales[i_layer],
layer_init_values=layer_init_values
)
self.layers.append(layer)
self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
try:
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
except:
pass
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward(self, x):
input_size = x.size(2)
scale = [4, 8, 16, 32]
features = [None, None, None, None]
x = self.patch_embed(x)
if input_size // x.size(2) in scale:
features[scale.index(input_size // x.size(2))] = x.permute(0, 3, 1, 2)
for layer in self.layers:
x = layer(x)
if input_size // x.size(2) in scale:
features[scale.index(input_size // x.size(2))] = x.permute(0, 3, 1, 2)
return features
def RMT_T():
model = VisRetNet(
embed_dims=[64, 128, 256, 512],
depths=[2, 2, 8, 2],
num_heads=[4, 4, 8, 16],
init_values=[2, 2, 2, 2],
heads_ranges=[4, 4, 6, 6],
mlp_ratios=[3, 3, 3, 3],
drop_path_rate=0.1,
chunkwise_recurrents=[True, True, False, False],
layerscales=[False, False, False, False]
)
model.default_cfg = _cfg()
return model
def RMT_S():
model = VisRetNet(
embed_dims=[64, 128, 256, 512],
depths=[3, 4, 18, 4],
num_heads=[4, 4, 8, 16],
init_values=[2, 2, 2, 2],
heads_ranges=[4, 4, 6, 6],
mlp_ratios=[4, 4, 3, 3],
drop_path_rate=0.15,
chunkwise_recurrents=[True, True, True, False],
layerscales=[False, False, False, False]
)
model.default_cfg = _cfg()
return model
def RMT_B():
model = VisRetNet(
embed_dims=[80, 160, 320, 512],
depths=[4, 8, 25, 8],
num_heads=[5, 5, 10, 16],
init_values=[2, 2, 2, 2],
heads_ranges=[5, 5, 6, 6],
mlp_ratios=[4, 4, 3, 3],
drop_path_rate=0.4,
chunkwise_recurrents=[True, True, True, False],
layerscales=[False, False, True, True],
layer_init_values=1e-6
)
model.default_cfg = _cfg()
return model
def RMT_L():
model = VisRetNet(
embed_dims=[112, 224, 448, 640],
depths=[4, 8, 25, 8],
num_heads=[7, 7, 14, 20],
init_values=[2, 2, 2, 2],
heads_ranges=[6, 6, 6, 6],
mlp_ratios=[4, 4, 3, 3],
drop_path_rate=0.5,
chunkwise_recurrents=[True, True, True, False],
layerscales=[False, False, True, True],
layer_init_values=1e-6
)
model.default_cfg = _cfg()
return model
if __name__ == '__main__':
model = RMT_T()
inputs = torch.randn((1, 3, 640, 640))
res = model(inputs)
for i in res:
print(i.size())