-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathobic.py
190 lines (147 loc) · 6.4 KB
/
obic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
from sklearn.decomposition import TruncatedSVD, PCA
from sklearn import metrics
from scipy import sparse
from gcn.utils import *
from gcn.models import GCN, MLP
from utils import load_data
###
# python obic.py --model gcn_cheby --nodes 64 --layers 1 --dropout 0.3 --max_degree 3 --svd 20
###
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('model', 'gcn', 'Model string.') # 'gcn', 'gcn_cheby', 'dense'
flags.DEFINE_string('npz', 'dd', 'Input npz data.')
flags.DEFINE_string('logfile', 'ff', 'Output log file.')
flags.DEFINE_string('resfile', 'rr', 'Output result file.')
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 200, 'Number of epochs to train.')
flags.DEFINE_integer('nodes', 32, 'Number of units in hidden layer.')
flags.DEFINE_integer('layers', 1, 'Number of hidden layers.')
flags.DEFINE_float('dropout', 0.3, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 5e-4, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_integer('early_stopping', 1000, 'Tolerance for early stopping (# of epochs).')
flags.DEFINE_integer('max_degree', 1, 'Maximum Chebyshev polynomial degree.')
flags.DEFINE_integer('svd', 0, 'Reduce dimensions (0 means no svd)')
flags.DEFINE_integer('seed', 123, 'random seed.')
# Set random seed
# seed = 123
np.random.seed(int(FLAGS.seed))
tf.set_random_seed(int(FLAGS.seed))
# log & result file
date_now = time.strftime("%Y-%m-%d %H-%M-%S", time.localtime())
log_file = open(str(FLAGS.logfile), 'a')
log_file.write(date_now + '\n')
log_file.write(' '.join(sys.argv) + '\n')
result_file = open(str(FLAGS.resfile), 'a')
result_file.write(date_now + '\n')
result_file.write(' '.join(sys.argv) + '\n')
# load data
# adj, features, y_train, train_mask, y_val, val_mask = load_data("data/tj/lzw.tif", "data/tj/features.txt", "data/tj/train.txt", "data/tj/test.txt")
# data = np.load('data/ah/ah_subset_50.npz')
# data = np.load('data/ah/ah_subset_20.npz')
# data = np.load('data/ah/ah_subset_10.npz')
# data = np.load('data/ah/ah_subset_6.npz')
# data = np.load('data/ah/ah_subset_5.npz')
# data = np.load('data/fj/fj.npz', allow_pickle=True)
# data = np.load('data/ah/ah_1_1_1_1.npz', allow_pickle=True)
data = np.load(str(FLAGS.npz), allow_pickle=True)
adj = data['adj'][()]
features = data['features'][()]
y_train = data['y_train'][()]
train_mask = data['train_mask'][()]
y_val = data['y_val'][()]
val_mask = data['val_mask'][()]
y_test = data['y_test'][()]
test_mask = data['test_mask'][()]
if FLAGS.svd > 0:
svd = TruncatedSVD(n_components = FLAGS.svd, random_state=int(FLAGS.seed))
svd.fit(features)
features = sparse.lil_matrix(svd.transform(features) , dtype='float32')
# pca = PCA(n_components=20, random_state=seed)
# features = features.toarray()
# pca.fit(features)
# features = sparse.lil_matrix(pca.transform(features) , dtype='float32')
# print(repr(adj))
# print(repr(features))
# print(repr(y_train))
# print(repr(train_mask))
# print(y_val.shape)
# print(repr(val_mask))
# print(y_test.shape)
# exit()
# Some preprocessing
features = preprocess_features(features)
if FLAGS.model == 'gcn':
support = [preprocess_adj(adj)]
num_supports = 1
model_func = GCN
elif FLAGS.model == 'gcn_cheby':
support = chebyshev_polynomials(adj, FLAGS.max_degree)
num_supports = 1 + FLAGS.max_degree
model_func = GCN
elif FLAGS.model == 'dense':
support = [preprocess_adj(adj)] # Not used
num_supports = 1
model_func = MLP
else:
raise ValueError('Invalid argument for model: ' + str(FLAGS.model))
# Define placeholders
placeholders = {
'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'features': tf.sparse_placeholder(tf.float32, shape=tf.constant(features[2], dtype=tf.int64)),
'labels': tf.placeholder(tf.float32, shape=(None, y_train.shape[1])),
'labels_mask': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder(tf.int32) # helper variable for sparse dropout
}
# Create model
model = model_func(placeholders, input_dim=features[2][1], logging=True)
# Initialize session
sess = tf.Session()
# Define model evaluation function
def evaluate(features, support, labels, mask, placeholders):
t_test = time.time()
feed_dict_val = construct_feed_dict(features, support, labels, mask, placeholders)
outs_val = sess.run([model.loss, model.accuracy], feed_dict=feed_dict_val)
return outs_val[0], outs_val[1], (time.time() - t_test)
# Init variables
sess.run(tf.global_variables_initializer())
cost_val = []
# Train model
best_voa = 0.
t_start = time.time()
for epoch in range(FLAGS.epochs):
# Construct feed dictionary
feed_dict = construct_feed_dict(features, support, y_train, train_mask, placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
# Training step
outs = sess.run([model.opt_op, model.loss, model.accuracy], feed_dict=feed_dict)
# Validation
cost, acc, duration = evaluate(features, support, y_val, val_mask, placeholders)
cost_val.append(cost)
log_file.write('{} {} {} {} {} {} {} {} {} {}\n'.format("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(outs[1]),
"train_acc=", "{:.5f}".format(outs[2]), "val_loss=", "{:.5f}".format(cost),
"val_acc=", "{:.5f}".format(acc)))
if acc > best_voa:
best_voa = acc
if epoch > FLAGS.early_stopping and cost_val[-1] > np.mean(cost_val[-(FLAGS.early_stopping+1):-1]):
print("Early stopping...")
break
total_time = time.time() - t_start
pred = sess.run(tf.argmax(model.outputs, 1), construct_feed_dict(features, support, y_test, test_mask, placeholders))
y_test = np.argmax(y_test, axis=1)
test_mask = test_mask.astype('float')
oa = metrics.accuracy_score(y_test, pred, sample_weight=test_mask)
kappa = metrics.cohen_kappa_score(y_test, pred, sample_weight=test_mask)
fscore = metrics.f1_score(y_test, pred, average='weighted', sample_weight=test_mask)
print("Optimization Finished!, best VOA:", best_voa, "OA:", oa, 'Kappa', kappa, 'F1-score', fscore, "total time:", "{:.5f}s".format(total_time))
# log
log_file.write('\n\n\n')
log_file.close()
result_file.write('best VOA:\t{}\tOA:\t{}\tKappa\t{}\tF1-score\t{}\ttotal time:\t{}\n\n'.format(best_voa, oa, kappa, fscore, "{:.5f}".format(total_time)))
result_file.close()