-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
198 lines (162 loc) · 7.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import random
import numpy as np
from scipy import sparse
# from sklearn.decomposition import TruncatedSVD, PCA
# from sklearn.metrics.pairwise import cosine_similarity
# import networkx as nx
# Auhui Map
category_map = {
'building': [1, 0, 0, 0, 0],
'bare': [0, 1, 0, 0, 0],
'road': [0, 0, 1, 0, 0],
'vegetation': [0, 0, 0, 1, 0],
'water': [0, 0, 0, 0, 1]
}
# Fujian Map
# category_map = {
# 'farmland': [1, 0, 0, 0, 0, 0, 0, 0] ,
# 'garden': [0, 1, 0, 0, 0, 0, 0, 0] ,
# 'woodland': [0, 0, 1, 0, 0, 0, 0, 0] ,
# 'grass': [0, 0, 0, 1, 0, 0, 0, 0] ,
# 'building': [0, 0, 0, 0, 1, 0, 0, 0] ,
# 'artifact': [0, 0, 0, 0, 0, 1, 0, 0] ,
# 'bareland': [0, 0, 0, 0, 0, 0, 1, 0] ,
# 'waters': [0, 0, 0, 0, 0, 0, 0, 1]
# }
def load_data(mask_path, features_path, training_data_path, validation_data_path, test_data_path):
from osgeo import gdal, gdal_array
from gdalconst import GA_ReadOnly
src_ds = gdal.Open(mask_path, GA_ReadOnly)
objects_img = (gdal_array.DatasetReadAsArray(src_ds))
count = np.max(objects_img, axis=None) + 1
# features
features_dim = 181
features = np.zeros((count, features_dim), 'float32')
with open(features_path) as file:
for line in file.readlines():
splited_line = line.split('\t')
object_id = int(splited_line[0])
features[object_id][:] = [float(feature) for feature in splited_line[1:]]
features = sparse.lil_matrix(features, dtype='float32')
# 1ordOBJ adjacency.
# Adjacency from related_obj
### BUGS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
adjency = np.zeros((count, count), dtype='float32')
# adjency = sparse.lil_matrix((count, count), dtype='float32')
for row_id, row in enumerate(objects_img):
if (row_id+1)<src_ds.RasterYSize:
for col_id, dn in enumerate(row):
if (col_id+1)<src_ds.RasterXSize:
right_dn = objects_img[row_id, col_id + 1]
down_dn = objects_img[row_id + 1, col_id]
right_down_dn = objects_img[row_id + 1, col_id + 1]
if dn != right_dn:
adjency[dn, right_dn] = adjency[right_dn, dn] = 1
if dn != down_dn:
adjency[dn, down_dn] = adjency[down_dn, dn] = 1
if dn != right_down_dn:
adjency[dn, right_down_dn] = adjency[right_down_dn, dn] = 1
if (col_id>0):
left_down_dn = objects_img[row_id + 1, col_id - 1]
if dn != down_dn:
adjency[dn, left_down_dn] = adjency[left_down_dn, dn] = 1
out_adj = sparse.lil_matrix(adjency, dtype='float32')
'''
Train,val,test Masks.
'''
# train data
# category_dim = 5
category_dim = len(category_map)
y_train = np.zeros((count, category_dim))
train_mask = [False] * count
with open(training_data_path) as file:
for line in file.readlines():
splited_line = line.split('\n')[0].split('\t')
object_id = int(splited_line[0])
category = category_map[splited_line[1]]
y_train[object_id] = np.array(category, dtype='int')
train_mask[object_id] = True
train_mask = np.array(train_mask, dtype='bool')
# validation data
y_val = np.zeros((count, category_dim))
val_mask = [False] * count
with open(validation_data_path) as file:
for line in file.readlines():
splited_line = line.split('\n')[0].split('\t')
object_id = int(splited_line[0])
category = category_map[splited_line[1]]
y_val[object_id] = np.array(category, dtype='int')
val_mask[object_id] = True
val_mask = np.array(val_mask, dtype='bool')
# test data
y_test = np.zeros((count, category_dim))
test_mask = [False] * count
with open(test_data_path) as file:
for line in file.readlines():
splited_line = line.split('\n')[0].split('\t')
object_id = int(splited_line[0])
category = category_map[splited_line[1]]
y_test[object_id] = np.array(category, dtype='int')
test_mask[object_id] = True
test_mask = np.array(test_mask, dtype='bool')
# all test.
# y_test = np.zeros((28452, category_dim))
# test_mask = [True] * 28452
# with open(test_data_path) as file:
# for line in file.readlines():
# splited_line = line.split('\n')[0].split('\t')
# object_id = int(splited_line[0])
# category = category_map[splited_line[1]]
# if adj_1ordOBJ_BOOL:
# y_test[object_id] = np.array(category, dtype='int')
# test_mask[object_id] = True
# elif adj_cosSIM_BOOL:
# y_test[conc_feature_list.index(object_id)] = np.array(category, dtype='int')
# test_mask[conc_feature_list.index(object_id)] = True
# test_mask = np.array(test_mask, dtype='bool')
return out_adj, features, y_train, train_mask, y_val, val_mask, y_test, test_mask
def generate_npz(path):
adj, features, y_train, train_mask, y_val, val_mask, y_test, test_mask = load_data("data/ah/ah_mask.tif", "data/ah/features.txt", "data/ah/train.txt", "data/ah/val.txt", "data/ah/test.txt")
# adj, features, y_train, train_mask, y_val, val_mask, y_test, test_mask = load_data("data/fj/fj_mask.tif", "data/fj/features.txt", "data/fj/train.txt", "data/fj/val.txt", "data/fj/test.txt")
np.savez(path, adj=adj, features=features, y_train=y_train, train_mask=train_mask, y_val=y_val, val_mask=val_mask, y_test=y_test, test_mask=test_mask)
def generate_sub_npz(input_path, output_path, sub_count):
data = np.load(input_path)
adj = data['adj'][()]
features = data['features'][()]
y_train = data['y_train'][()]
train_mask = data['train_mask'][()]
y_val = data['y_val'][()]
val_mask = data['val_mask'][()]
train_ids = np.where(train_mask == True)[0]
train_count = train_ids.shape[0]
sub_ids = random.sample(range(train_count), sub_count)
sub_train_ids = train_ids[sub_ids]
print(sub_train_ids)
# y_train = y_train[sub_train_ids]
train_mask[:] = False
train_mask[sub_train_ids] = True
np.savez(output_path, adj=adj, features=features, y_train=y_train, train_mask=train_mask, y_val=y_val, val_mask=val_mask)
if __name__ == '__main__':
# generate_npz('data/ah/ah_1_1_1_1.npz')
generate_npz('data/test.npz')
# generate_npz('data/fj/fj.npz')
# data = np.load('data/ah/ah_1_1_1_1.npz', allow_pickle=True)
data = np.load('data/test.npz', allow_pickle=True)
# data = np.load('data/fj/fj.npz', allow_pickle=True)
adj = data['adj'][()]
features = data['features'][()]
y_train = data['y_train'][()]
train_mask = data['train_mask'][()]
y_val = data['y_val'][()]
val_mask = data['val_mask'][()]
y_test = data['y_test'][()]
test_mask = data['test_mask'][()]
print (repr(adj))
print (repr(features))
print (repr(y_train))
print (repr(train_mask))
print (repr(y_val))
print (repr(val_mask))
print (repr(y_test))
print (repr(test_mask))
# print(features)