-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepLearning.py
167 lines (129 loc) · 4.27 KB
/
DeepLearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn.functional as F
import torch.nn as nn
import sys
from torch.autograd import Variable
#import torchtext
import time
import math
import random
import pandas as pd
import numpy as np
import glob
import pickle
import os
from music21 import converter, instrument, note, chord
import Model
import Training
import c
import predict
NUM_LAYERS, HIDDEN_SIZE = c.NUM_LAYERS, c.HIDDEN_SIZE
DROPOUT_P = c.DROPOUT_P
GENRES = ["Blues", "Country", "Indie", "Jazz", "Pop", "Psychedelic Rock", "Rock", "Soul"]
def get_note_str(note, duration):
return note.nameWithOctave + duration
def get_element_str(el, includeDuration):
duration = "-" + str(round(float(el.quarterLength), 3)) if includeDuration else ""
if isinstance(el, note.Note):
return get_note_str(el, duration)
elif isinstance(el, note.Rest):
return el.name + duration
elif isinstance(el, chord.Chord):
note_strings = [get_note_str(n, duration) for n in el.notes]
return " ".join(sorted(note_strings))
def get_dataset(includeDuration = False, byGenre = False, regenerate = False):
fileString = "musicDataset_includeDuration=" + \
str(includeDuration) + \
"_byGenre=" + \
str(byGenre) + \
".pickle"
# Check if this dataset is already generated
if not regenerate:
try:
previouslyGenerateDataset = open(fileString, "rb")
return pickle.load(previouslyGenerateDataset)
except:
print("Re/Creating Music Dataset")
# Create the data set by converting all the midi files into string vectors
dataset = {"total": []}
for genre in GENRES:
for file in glob.glob("./TrainingData/" + genre + "/*.mid"):
print("Parsing %s" % file)
midi = converter.parse(file)
try:
s2 = instrument.partitionByInstrument(midi)
notes_to_parse = s2.parts[0].recurse()
except:
notes_to_parse = midi.flat.notes
# Create the song vector
song = []
for el in notes_to_parse:
if isinstance(el, note.Note) or isinstance(el, chord.Chord) or isinstance(el, note.Rest):
song.append(get_element_str(el, includeDuration))
# Add the song to the list
if byGenre:
if genre in dataset:
dataset[genre].append(song)
else:
dataset[genre] = [song]
dataset["total"].append(song)
with open(fileString, "wb") as output:
pickle.dump(dataset, output, pickle.HIGHEST_PROTOCOL)
return dataset
def build_translations(songs):
vocab_set = set()
for i in songs:
vocab_set.update(i)
str_to_int = {}
int_to_str = []
for index, element in enumerate(sorted(vocab_set)):
str_to_int[element] = index
int_to_str.append(element)
return str_to_int, int_to_str
def data_composition(data):
comp_dict = {}
for song in data:
for note in song:
if note in comp_dict:
comp_dict[note] += 1
else:
comp_dict[note] = 1
return dict(sorted(comp_dict.items(), key=lambda item: item[1]))
def start_composition(data):
start_dict = {}
for song in data:
if song[0] in start_dict:
start_dict[song[0]] += 1
else:
start_dict[song[0]] = 1
return dict(sorted(start_dict.items(), key=lambda item: item[1]))
def standardize_songs(songs):
max_song_length = max(map(len, songs))
adjusted_songs = []
for song in songs:
song_length = len(song)
full_addition = max_song_length // song_length
part_addition = max_song_length % song_length
adjusted_song = song*full_addition
adjusted_song.extend(song[:part_addition])
adjusted_songs.append(adjusted_song)
return adjusted_songs
if __name__ == '__main__':
data = get_dataset()['total']
standard_data = standardize_songs(data)
str_to_int, int_to_str = build_translations(data)
in_size, out_size = [len(str_to_int)]*2
loss_function = nn.CrossEntropyLoss()
model = Model.MusicRNN(in_size, HIDDEN_SIZE, out_size, NUM_LAYERS, DROPOUT_P)
t = Training.ModelTrainer(loss_function, standard_data, str_to_int, model)
t.final_training()
#model = Model.MusicRNN(in_size, HIDDEN_SIZE, out_size, NUM_LAYERS, DROPOUT_P)
#model.load_state_dict(torch.load('checkpoint/ckpt_mdl_lstm_ep_50_hsize_32_dout_0.9.pt'))
#model.eval()
# Create a song
for i in range(5):
start_note = list(start_composition(data).keys())[-i]
song = predict.generate_song(model, str_to_int[start_note], 500)
song_notes = predict.ints_to_notes(song, int_to_str)
print(song_notes)
predict.create_midi(song_notes, "test_output" + str(i) + ".mid")