-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
190 lines (146 loc) · 6.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import json
import numpy as np
import re
import io
import nltk
import os
from keras import backend as K
from keras import optimizers
from keras.models import Model
from keras.layers.embeddings import Embedding
from keras.layers import Input, Dense, Merge, Dropout, RepeatVector, Activation, merge, Lambda, Flatten, Reshape
from keras.layers import LSTM, Bidirectional, TimeDistributed, GRU, AveragePooling1D, Reshape, GlobalAveragePooling1D
from keras.preprocessing.sequence import pad_sequences
from simpleAttention import Attention, SimpleAttention, SSimpleAttention
from keras.optimizers import Adam, RMSprop
from keras.callbacks import ModelCheckpoint, EarlyStopping
from preprocessing_data import *
from pprint import pprint
# nltk.download() # after downloaded nltk, can cancel out this line
# when asked which identifier - type punkt
print('Loading in Training data...')
with io.open('train-v1.1.json', 'r', encoding='utf-8') as f:
raw_data = f.read()
trainData = json.loads(raw_data)
tContext, tQuestion, tQuestion_id, tAnswerBegin, tAnswerEnd, tAnswerText, maxLenTContext, maxLenTQuestion = splitTrainDatasets(trainData)
print('Loading in Validation data...')
with io.open('dev-v1.1.json', 'r', encoding='utf-8') as f:
raw_val = f.read()
valData = json.loads(raw_val)
vContext, vToken2CharIdx, vContextSentences, vQuestion, vQuestion_id, maxLenVContext, maxLenVQuestion = splitValDatasets(valData)
print('Building vocabulary...')
vocab = {}
for setences in tContext + tQuestion + vContext + vQuestion:
for word in setences:
if word not in vocab:
vocab[word] = 1
vocab = sorted(vocab.keys())
# Reserve 0 for masking via pad_sequences
vocab_size = len(vocab) + 1
word_index = dict((c, i + 1) for i, c in enumerate(vocab))
context_maxlen = max(maxLenTContext, maxLenVContext)
question_maxlen = max(maxLenTQuestion, maxLenVQuestion)
print('Begin vectoring process...')
# tX: training Context, tXq: training Question, tYBegin: training Answer
# Begin ptr, tYEnd: training Answer End ptr
tX, tXq, tYBegin, tYEnd = vectorizeTrainData(tContext, tQuestion, tAnswerBegin, tAnswerEnd, word_index, context_maxlen, question_maxlen)
# shuffle train data
randindex = np.random.permutation(tX.shape[0])
tX = tX[randindex, :]
tXq = tXq[randindex, :]
tYBegin = tYBegin[randindex, :]
tYEnd = tYEnd[randindex, :]
# vX: validation Context, vXq: validation Question
vX, vXq = vectorizeValData(vContext, vQuestion, word_index, context_maxlen, question_maxlen)
print('Vectoring process completed.')
# print('tX.shape = {}'.format(tX.shape))
# print('tXq.shape = {}'.format(tXq.shape))
# print('tYBegin.shape = {}'.format(tYBegin.shape))
# print('tYEnd.shape = {}'.format(tYEnd.shape))
# print('vX.shape = {}'.format(vX.shape))
# print('vXq.shape = {}'.format(vXq.shape))
# print('context_maxlen, question_maxlen = {}, {}'.format(
# context_maxlen, question_maxlen))
print('Preparing embedding matrix.')
# prepare embedding matrix
nb_words = len(word_index)
EMBEDDING_DIM = 100
MAX_SEQUENCE_LENGTH = context_maxlen
embeddings_index = {}
f = open(os.path.join('glove.6B', 'glove.6B.100d.txt'))
# f = open('glove.6B.100d.txt')
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
EMBEDDING_DIM = 100
embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
print("Defining Model...")
question_input = Input(shape=(question_maxlen,),
dtype='int32', name='question_input')
context_input = Input(shape=(context_maxlen,),
dtype='int32', name='context_input')
questionEmbd = Embedding(output_dim=EMBEDDING_DIM, input_dim=vocab_size,
mask_zero=True, weights=[embedding_matrix],
input_length=question_maxlen, trainable=False)(question_input)
contextEmbd = Embedding(output_dim=EMBEDDING_DIM, input_dim=vocab_size,
mask_zero=True, weights=[embedding_matrix],
input_length=context_maxlen, trainable=False)(context_input)
Q = Bidirectional(LSTM(64, return_sequences=True))(questionEmbd)
D = Bidirectional(LSTM(64, return_sequences=True))(contextEmbd)
# Q1 = Bidirectional(LSTM(96, return_sequences=True))(Q)
# D1 = Bidirectional(LSTM(96, return_sequences=True))(D)
Q2 = LSTM(128, return_sequences=False)(Q)
D2 = LSTM(128, return_sequences=False)(D)
Q3 = SimpleAttention(128, D2, 128, return_sequences=True)(Q)
D3 = SimpleAttention(128, Q2, 128, return_sequences=True)(D)
Q4 = LSTM(128, return_sequences=False)(Q3)
D4 = LSTM(128, return_sequences=False)(D3)
L = merge([D4, Q4], mode='concat')
answerPtrBegin_output = Dense(context_maxlen, activation='softmax')(L)
Lmerge = merge([L, answerPtrBegin_output], mode='concat', name='merge2')
answerPtrEnd_output = Dense(context_maxlen, activation='softmax')(Lmerge)
model = Model(input=[context_input, question_input], output=[
answerPtrBegin_output, answerPtrEnd_output])
model.compile(optimizer='adam', loss='categorical_crossentropy',
loss_weights=[.04, 0.04], metrics=['accuracy'])
model.summary()
print('ModelCheckpoint')
checkpoint1 = EarlyStopping(monitor='val_dense_1_loss', min_delta=0.01, patience=5, verbose=0, mode='auto')
checkpoint2 = EarlyStopping(monitor='val_dense_2_loss', min_delta=0.01, patience=5, verbose=0, mode='auto')
callbacks_list = [checkpoint1, checkpoint2]
model.fit([tX, tXq], [tYBegin, tYEnd], epochs=5, batch_size=256, shuffle=True, validation_split=0.2,
callbacks=callbacks_list)
print('Finish Training...')
# model.save('model1')
# D.save('D.h5')
print('-------------------------')
print('Start Predicting Process... ')
predictions = model.predict([vX, vXq], batch_size=128)
ansBegin = np.zeros((predictions[0].shape[0],), dtype=np.int32)
ansEnd = np.zeros((predictions[1].shape[0],), dtype=np.int32)
for i in range(predictions[0].shape[0]):
ansBegin[i] = predictions[0][i, :].argmax()
ansEnd[i] = predictions[1][i, :].argmax()
answers = {}
for i in range(len(vQuestion_id)):
# print i
if ansBegin[i] >= len(vContext[i]):
answers[vQuestion_id[i]] = ""
elif ansEnd[i] >= len(vContext[i]):
answers[vQuestion_id[i]] = vContextSentences[i][vToken2CharIdx[i][ansBegin[i]]:]
else:
answers[vQuestion_id[i]] = vContextSentences[i][vToken2CharIdx[i][ansBegin[i]]:vToken2CharIdx[i][ansEnd[i]]+len(vContext[i][ansEnd[i]])]
# The original context paragraph with full sentences of 'the ith sample'
# [the first answer idex word within vToken2CharId in'the ith sample': the last answer index word + the len of the last word]
print('Writing out Predictions...')
# write out answers to json file
with io.open('FiveEpo-Prediction-newmodel.json', 'w', encoding='utf-8') as f:
f.write((json.dumps(answers, ensure_ascii=False)))