-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcaption.py
247 lines (205 loc) · 10.6 KB
/
caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python3
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
from datasets import *
from utils import *
# from nltk.translate.bleu_score import corpus_bleu
import torch.nn.functional as F
from tqdm import tqdm
import argparse
import time
import cv2
import numpy
# import transformer, models
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def save_captions(args, word_map, hypotheses):
result_json_file = {}
reference_json_file = {}
kkk = -1
for item in hypotheses:
kkk += 1
line_hypo = ""
for word_idx in item:
word = get_key(word_map, word_idx)
# print(word)
line_hypo += word[0] + " "
result_json_file[str(kkk)] = []
result_json_file[str(kkk)].append(line_hypo)
line_hypo += "\r\n"
print(result_json_file)
with open('eval_results/'+'/'+args.encoder_image + "_" +args.encoder_feat+"_" +args.decoder + '_res.json', 'w') as f:
json.dump(result_json_file, f)
def get_key(dict_, value):
return [k for k, v in dict_.items() if v == value]
def evaluate_transformer(args,encoder_image,encoder_feat,decoder):
# Load model
encoder_image = encoder_image.to(device)
encoder_image.eval()
encoder_feat = encoder_feat.to(device)
encoder_feat.eval()
decoder = decoder.to(device)
decoder.eval()
# Load word map (word2ix)
word_map_file = os.path.join(args.data_folder, 'WORDMAP_' + args.data_name + '.json')
with open(word_map_file, 'r') as f:
word_map = json.load(f)
rev_word_map = {v: k for k, v in word_map.items()}
vocab_size = len(word_map)
"""
Evaluation for decoder: transformer
:param beam_size: beam size at which to generate captions for evaluation
:return: BLEU-4 score
"""
beam_size = args.beam_size
Caption_End = False
# DataLoader
# Lists to store references (true captions), and hypothesis (prediction) for each image
# If for n images, we have n hypotheses, and references a, b, c... for each image, we need -
# references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...]
references = list()
hypotheses = list()
with torch.no_grad():
k = beam_size
# Read image and process
img_A = imread(args.img_A)
img_A = img_A.transpose(2, 0, 1)
img_A = img_A / 255.
img_A = torch.FloatTensor(img_A).to(device)
img_B = imread(args.img_B)
img_B = img_B.transpose(2, 0, 1)
img_B = img_B / 255.
img_B = torch.FloatTensor(img_B).to(device)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([normalize])
img_A = transform(img_A) # (3, 256, 256)
img_A = img_A.unsqueeze(0) # (1, 3, 256, 256)
img_B = transform(img_B) # (3, 256, 256)
img_B = img_B.unsqueeze(0) # (1, 3, 256, 256)
# Encode
imgs_A = encoder_image(img_A)
imgs_B = encoder_image(img_B) # encoder_image :[1, 1024,14,14]
encoder_out = encoder_feat(imgs_A, imgs_B) # encoder_out: (S, batch, feature_dim)
tgt = torch.zeros(52, k).to(device).to(torch.int64)
tgt_length = tgt.size(0)
mask = (torch.triu(torch.ones(tgt_length, tgt_length)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
mask = mask.to(device)
tgt[0, :] = torch.LongTensor([word_map['<start>']]*k).to(device) # k_prev_words:[52,k]
# Tensor to store top k sequences; now they're just <start>
seqs = torch.LongTensor([[word_map['<start>']]*1] * k).to(device) # [1,k]
# Tensor to store top k sequences' scores; now they're just 0
top_k_scores = torch.zeros(k, 1).to(device)
# Lists to store completed sequences and scores
complete_seqs = []
complete_seqs_scores = []
step = 1
k_prev_words = tgt.permute(1,0)
S = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
# # We'll treat the problem as having a batch size of k, where k is beam_size
encoder_out = encoder_out.expand(S,k, encoder_dim) # [S,k, encoder_dim]
encoder_out = encoder_out.permute(1,0,2)
# Start decoding
# s is a number less than or equal to k, because sequences are removed from this process once they hit <end>
while True:
tgt = k_prev_words.permute(1,0)
tgt_embedding = decoder.vocab_embedding(tgt)
tgt_embedding = decoder.position_encoding(tgt_embedding) # (length, batch, feature_dim)
encoder_out = encoder_out.permute(1, 0, 2)
pred = decoder.transformer(tgt_embedding, encoder_out, tgt_mask=mask) # (length, batch, feature_dim)
encoder_out = encoder_out.permute(1, 0, 2)
pred = decoder.wdc(pred) # (length, batch, vocab_size)
scores = pred.permute(1,0,2) # (batch,length, vocab_size)
scores = scores[:, step - 1, :].squeeze(1) # [s, 1, vocab_size] -> [s, vocab_size]
scores = F.log_softmax(scores, dim=1)
# top_k_scores: [s, 1]
scores = top_k_scores.expand_as(scores) + scores # [s, vocab_size]
# For the first step, all k points will have the same scores (since same k previous words, h, c)
if step == 1:
top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
else:
# Unroll and find top scores, and their unrolled indices
top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # (s)
# Convert unrolled indices to actual indices of scores
# prev_word_inds = top_k_words // vocab_size # (s)
# if max(top_k_words)>vocab_size:
# print(">>>>>>>>>>>>>>>>>>")
prev_word_inds = torch.div(top_k_words, vocab_size, rounding_mode='floor')
next_word_inds = top_k_words % vocab_size # (s)
# Add new words to sequences
seqs = torch.cat([seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
# Which sequences are incomplete (didn't reach <end>)?
incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
next_word != word_map['<end>']]
complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))
# Set aside complete sequences
if len(complete_inds) > 0:
Caption_End = True
complete_seqs.extend(seqs[complete_inds].tolist())
complete_seqs_scores.extend(top_k_scores[complete_inds])
k -= len(complete_inds) # reduce beam length accordingly
# Proceed with incomplete sequences
if k == 0:
break
seqs = seqs[incomplete_inds]
encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
# Important: this will not work, since decoder has self-attention
# k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1).repeat(k, 52)
k_prev_words = k_prev_words[incomplete_inds]
k_prev_words[:, :step + 1] = seqs # [s, 52]
# k_prev_words[:, step] = next_word_inds[incomplete_inds] # [s, 52]
# Break if things have been going on too long
if step > 50:
break
step += 1
# choose the caption which has the best_score.
if (len(complete_seqs_scores) > 0):
assert Caption_End
indices = complete_seqs_scores.index(max(complete_seqs_scores))
seq = complete_seqs[indices]
# References
# img_caps = allcaps[0].tolist()
# img_captions = list(
# map(lambda c: [w for w in c if w not in {word_map['<start>'], word_map['<end>'], word_map['<pad>']}],
# img_caps)) # remove <start> and pads
# references.append(img_captions)
# Hypotheses
# tmp_hyp = [w for w in seq if w not in {word_map['<start>'], word_map['<end>'], word_map['<pad>']}]
hypotheses.append([w for w in seq if w not in {word_map['<start>'], word_map['<end>'], word_map['<pad>']}])
# assert len(references) == len(hypotheses)
# captions
save_captions(args, word_map, hypotheses)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Change_Captioning')
parser.add_argument('--img_A', default='./Example/A/train_000016.png')
parser.add_argument('--img_B', default='./Example/B/train_000016.png')
parser.add_argument('--data_folder', default="./data/",help='folder with data files saved by create_input_files.py.')
parser.add_argument('--data_name', default="Levir_CC_5_cap_per_img_5_min_word_freq",help='base name shared by data files.')
parser.add_argument('--encoder_image', default="resnet101") # inception_v3 or vgg16 or vgg19 or resnet50 or resnet101 or resnet152
parser.add_argument('--encoder_feat', default="MCCFormers_diff_as_Q") # MCCFormers-S or MCCFormers-D
parser.add_argument('--decoder', default="trans", help="decoder img2txt") #
parser.add_argument('--Split', default="TEST", help='which')
parser.add_argument('--epoch', default="epoch", help='which')
parser.add_argument('--beam_size', type=int, default=1, help='beam_size.')
parser.add_argument('--path', default="./models_checkpoint/", help='model checkpoint.') # ./models_checkpoint/data/2-times/RSICCformer_D/Simis_baseline/
args = parser.parse_args()
filename = os.listdir(args.path)
for i in range(len(filename)):
if (args.epoch in filename[i]) or (args.encoder_feat not in filename[i])or (args.decoder not in filename[i]) :
continue
print(time.strftime("%m-%d %H : %M : %S", time.localtime(time.time())))
checkpoint_path = os.path.join(args.path, filename[i])
print(args.path + filename[i])
# Load model
checkpoint = torch.load(checkpoint_path, map_location=str(device))
encoder_image = checkpoint['encoder_image']
encoder_feat = checkpoint['encoder_feat']
decoder = checkpoint['decoder']
evaluate_transformer(args,encoder_image,encoder_feat,decoder)
time.sleep(10)