-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain.py
87 lines (67 loc) · 2.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.nn.functional as F
from config import Config
from model import TextCNN
from data import TextDataset
import argparse
torch.manual_seed(1)
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--out_channel', type=int, default=2)
parser.add_argument('--label_num', type=int, default=2)
parser.add_argument('--seed', type=int, default=1)
args = parser.parse_args()
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.set_device(args.gpu)
# Create the configuration
config = Config(sentence_max_size=50,
batch_size=args.batch_size,
word_num=11000,
label_num=args.label_num,
learning_rate=args.lr,
cuda=args.gpu,
epoch=args.epoch,
out_channel=args.out_channel)
training_set = TextDataset(path='data/train')
training_iter = data.DataLoader(dataset=training_set,
batch_size=config.batch_size,
num_workers=2)
model = TextCNN(config)
embeds = nn.Embedding(config.word_num, config.word_embedding_dimension)
if torch.cuda.is_available():
model.cuda()
embeds = embeds.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=config.lr)
count = 0
loss_sum = 0
# Train the model
for epoch in range(config.epoch):
for data, label in training_iter:
if config.cuda and torch.cuda.is_available():
data = data.cuda()
labels = label.cuda()
input_data = embeds(autograd.Variable(data))
out = model(data)
loss = criterion(out, autograd.Variable(label.float()))
loss_sum += loss.data[0]
count += 1
if count % 100 == 0:
print("epoch", epoch, end=' ')
print("The loss is: %.5f" % (loss_sum/100))
loss_sum = 0
count = 0
optimizer.zero_grad()
loss.backward()
optimizer.step()
# save the model in every epoch
model.save('checkpoints/epoch{}.ckpt'.format(epoch))