-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
91 lines (80 loc) · 4.44 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import tensorflow as tf
import numpy as np
class FastText:
def __init__(self, label_size, learning_rate, batch_size, num_sampled, sentence_len, vocab_size, embed_size, is_training):
"""init all hyperparameter here"""
self.label_size = label_size
self.batch_size = batch_size
self.num_sampled = num_sampled
self.sentence_len = sentence_len
self.vocab_size = vocab_size
self.embed_size = embed_size
self.is_training = is_training
self.learning_rate = learning_rate
self.sentence = tf.placeholder(tf.int32, [None, self.sentence_len], name="sentence") # X
self.labels = tf.placeholder(tf.int32, [None], name="Labels") # y
self.global_step = tf.Variable(0, trainable=False, name="Global_Step")
self.epoch_step = tf.Variable(0, trainable=False, name="Epoch_Step")
self.epoch_increment = tf.assign(self.epoch_step, tf.add(self.epoch_step, tf.constant(1)))
self.epoch_step = tf.Variable(0, trainable=False, name="Epoch_Step")
self.instantiate_weights()
self.logits = self.inference() # [None, self.label_size]
if not is_training:
return
self.loss_val = self.loss()
self.train_op = self.train()
self.predictions = tf.argmax(self.logits, axis=1, name="predictions") # shape:[None,]
correct_prediction = tf.equal(tf.cast(self.predictions, tf.int32), self.labels)
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name="Accuracy")
def instantiate_weights(self):
self.Embedding = tf.get_variable("Embedding", [self.vocab_size, self.embed_size])
self.W = tf.get_variable("W", [self.embed_size, self.label_size])
self.b = tf.get_variable("b", [self.label_size])
def inference(self):
sentence_embeddings = tf.nn.embedding_lookup(self.Embedding, self.sentence) # [None,self.sentence_len,self.embed_size]
self.sentence_embeddings = tf.reduce_mean(sentence_embeddings, axis=1) # [None,self.embed_size]
logits = tf.matmul(self.sentence_embeddings, self.W) + self.b #[None, self.label_size]==tf.matmul([None,self.embed_size],[self.embed_size,self.label_size])
return logits
def loss(self):
if self.is_training: #training
labels = tf.reshape(self.labels, [-1])
labels = tf.expand_dims(labels, 1)
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=tf.transpose(self.W),
biases=self.b,
labels=labels,
inputs=self.sentence_embeddings,
num_sampled=self.num_sampled,
num_classes=self.label_size,
partition_strategy="div"))
else:
labels_one_hot = tf.one_hot(self.labels, self.label_size) #[batch_size]---->[batch_size,label_size]
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_one_hot, logits=self.logits) #labels:[batch_size,label_size];logits:[batch, label_size]
print("loss0:", loss) #shape=(?, 1999)
loss = tf.reduce_sum(loss, axis=1)
print("loss1:", loss) #shape=(?,)
return loss
def train(self):
train_op = tf.contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step, learning_rate=self.learning_rate, optimizer="Adam")
return train_op
def tt():
num_classes=19
learning_rate=0.01
batch_size=8
decay_steps=1000
decay_rate=0.9
sequence_length=10
vocab_size = 10000
embed_size = 100
is_training=True
dropout_keep_prob=1
fastext=FastText(num_classes, learning_rate, batch_size, decay_steps, decay_rate, 5, sequence_length, vocab_size, embed_size, is_training)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
input_x = np.zeros((batch_size, sequence_length), dtype=np.int32) #[None, self.sequence_length]
input_y = np.array([1, 0, 1, 1, 1, 2, 1, 1], dtype=np.int32) #np.zeros((batch_size),dtype=np.int32) #[None, self.sequence_length]
loss, acc, predict, _ = sess.run([fastext.loss_val, fastext.accuracy, fastext.predictions, fastext.train_op],
feed_dict={fastext.sentence:input_x, fastext.labels:input_y})
print("loss:", loss, "acc:", acc, "label:", input_y, "prediction:", predict)
#print("ended...")