generated from eliahuhorwitz/Academic-project-page-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
596 lines (526 loc) · 30.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="Literature Meets Data: A Synergistic Approach to Hypothesis Generation">
<meta property="og:title" content="Chicago Human + AI lab: Hypothesis generation project"/>
<meta property="og:description" content="This is the official website of the paper - Literature Meets Data: A Synergistic Approach to Hypothesis Generation."/>
<meta property="og:url" content="https://chicagohai.github.io/hypogenic-demo/"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="Chicago Human + AI lab: Hypothesis generation project">
<meta name="twitter:description" content="This is the official website of the paper - Literature Meets Data: A Synergistic Approach to Hypothesis Generation.">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="Hypothesis Generation, Scientific Discovery, Artificial Intelligence, AI for Science, Research Agents">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Hypothesis Generation Project Page</title>
<link rel="icon" type="image/x-icon" href="static/images/favicon.ico">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Literature Meets Data: A Synergistic Approach to Hypothesis Generation</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a href="https://haokunliu.com/" target="_blank">Haokun Liu</a><sup>*</sup>,</span>
<span class="author-block">
<a href="https://rosafish.github.io/" target="_blank">Yangqiaoyu Zhou</a><sup>*</sup>,</span>
<span class="author-block">
<a href="https://itea1001.github.io/" target="_blank">Mingxuan Li</a><sup>*</sup>, </span>
<span class="author-block">
<a>Chenfei Yuan</a>, and </span>
<span class="author-block">
<a href="https://chenhaot.com/" target="_blank">Chenhao Tan</a>.</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">University of Chicago<br></span>
<span class="eql-cntrb"><small><br><sup>*</sup>Indicates Equal Contribution</small></span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2410.17309" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/ChicagoHAI/hypothesis-generation" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Dataset Link -->
<span class="link-block">
<a href="https://github.com/ChicagoHAI/HypoGeniC-datasets" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Datasets</span>
</a>
</span>
<!-- PyPI Link -->
<span class="link-block">
<a href="https://pypi.org/project/hypogenic/" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-python"></i>
</span>
<span>PyPI</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2410.17309" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Youtube video -->
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="column has-text-centered">
<h2 class="title is-3 is-centered">Podcast of our paper (powered by NotebookLM)</h2>
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="publication-video">
<iframe width="560" height="315" src="https://www.youtube.com/embed/q7Vrvpc1cPQ"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- End youtube video -->
<!-- Teaser video
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video poster="" id="tree" autoplay controls muted loop height="100%">
<source src="static/videos/banner_video.mp4"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
Aliquam vitae elit ullamcorper tellus egestas pellentesque. Ut lacus tellus, maximus vel lectus at, placerat pretium mi. Maecenas dignissim tincidunt vestibulum. Sed consequat hendrerit nisl ut maximus.
</h2>
</div>
</div>
</section>
End teaser video -->
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
AI holds promise for transforming scientific processes, including hypothesis generation. Prior work on hypothesis generation can be broadly categorized into theory-driven and data-driven approaches. While both have proven effective in generating novel and plausible hypotheses, it remains an open question whether they can complement each other. To address this, we develop the first method that combines literature-based insights with data to perform LLM-powered hypothesis generation. We apply our method on five different datasets and demonstrate that integrating literature and data outperforms other baselines (8.97% over few-shot, 15.75% over literature-based alone, and 3.37% over data-driven alone). Additionally, we conduct the first human evaluation to assess the utility of LLM-generated hypotheses in assisting human decision-making on two challenging tasks: deception detection and AI generated content detection. Our results show that human accuracy improves significantly by 7.44% and 14.19% on these tasks, respectively. These findings suggest that integrating literature-based and data-driven approaches provides a comprehensive and nuanced framework for hypothesis generation and could open new avenues for scientific inquiry.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<section class="section hero is-small">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full">
<div class="hero-body">
<div class="level-set has-text-justified">
<p>
Hypothesis generation is a critical yet understudied step in scientific discoveries. Current approaches fall into two main categories:
</p>
<ul>
<li><strong>Theory-driven methods:</strong> Utilize literature to propose hypotheses grounded in established human knowledge. However, they lack adaptability to new data.</li>
<li><strong>Data-driven methods:</strong> Identify patterns within data to generate adaptive hypotheses but often overfit specific datasets, limiting their generalizability.</li>
</ul>
<p>
To overcome these limitations, we introduce a novel framework that integrates insights from both literature and data. By leveraging large language models (LLMs), our method synthesizes knowledge from literature and data, producing hypotheses that are both robust and adaptive.
</p>
</div>
<img src="static/images/hypothesis-agent_figure1.jpg" alt="Our hypothesis generation framework"/>
<p>
Illustration of how we combine literature-based and data-driven hypotheses. See algorithmic details in section 2 of our paper.
</p>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container is-max-desktop">
<h2 class="title is-3">Data-driven Hypothesis Generation</h2>
<div class="level-set has-text-justified">
<p>
Our data-driven hypothesis generation is based on the <a href="https://arxiv.org/abs/2404.04326" target="_blank" class="blue-link">HypoGeniC</a> framework. The process involves two main stages:
</p>
<ul>
<li>
<strong>Initialization:</strong> The model generates an initial set of hypotheses using a small subset of data. These hypotheses form the basis for further refinement.
</li>
<li>
<strong>Update:</strong> Hypotheses are iteratively refined based on their performance. Poorly performing hypotheses are replaced with new ones generated from challenging examples, ensuring continuous improvement.
</li>
</ul>
<p>
This iterative approach improves the quality and adaptability of hypotheses by leveraging both the initial data patterns and feedback from challenging cases.
</p>
</div>
<img src="static/images/hypogenic_figure1.jpg" alt="HypoGeniC figure" class="blend-img-background center-image"/>
<p>Illustration of <strong><a href="https://arxiv.org/abs/2404.04326" target="_blank" class="blue-link">HypoGeniC</a></strong>. During update stage, we evaluate the top k hypotheses on each
new training example and update the reward based on the prediction correctness. If the number of
hypotheses that got the example wrong exceeds a certain threshold, we add the example to a wrong
example bank. The wrong example bank is then used to generate new hypotheses.
</div>
</div>
</div>
</section>
<section class="section hero is-small">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full">
<div class="content">
<h2 class="title is-3">Literature-based Hypothesis Generation</h2>
<div class="level-set has-text-justified">
<p>
Our process begins by selecting 10 papers relevant to the research question from Semantic Scholar or Google Scholar. We also search within papers citing the original datasets for each task. These papers are converted into a JSON corpus using
<a href="https://aclanthology.org/2020.acl-main.447/" target="_blank" class="blue-link">S2ORC-doc2json</a>.
</p>
<p>
Then, we develop a paper summarizer to generate concise summaries. For the <strong>literature-only</strong> method, language models are instructed to generate hypotheses from these summaries, emphasizing their relevance and utility for the specific tasks under consideration.
</p>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container is-max-desktop">
<h2 class="title is-3">Integration of Literature-Based and Data-Driven Hypotheses</h2>
<div class="level-set has-text-justified">
<p>
A key contribution of our work is the integration of literature-based and data-driven hypothesis generation. This approach combines the strengths of both methods to enhance the generalizability and utility of generated hypotheses. We employ two strategies:
</p>
<h3 class="subtitle is-4">Refining Hypotheses with Literature and Data</h3>
<p>
The <strong>refinement method</strong> integrates paper summaries with <a href="https://arxiv.org/abs/2404.04326" target="_blank" class="blue-link">HypoGeniC</a>. During initialization, an LLM generates hypotheses based on both initial data examples and relevant paper summaries.
</p>
<p>
In the update stage, hypotheses generated from challenging examples are refined iteratively by data-driven and literature-based refinement agents. This iterative process ensures the hypotheses incorporate both empirical patterns and key insights from the literature. After multiple rounds of refinement, the final hypothesis bank is returned to the HypoGeniC pipeline for further use.
</p>
<img src="static/images/refine_figure.jpg" alt="refinement of hypotheses"/>
<p>
Illustration of how we refine hypotheses using literature and data. See algorithmic details in section 2 of our paper.
</p>
<h3 class="subtitle is-4">Union and Redundancy Elimination</h3>
<p>
To address the potential undervaluation of literature-based hypotheses, we employ a union strategy. Two hypothesis banks are created: one from literature-based methods and the other using HypoGeniC or the refinement method. A redundancy checker removes similar or repetitive hypotheses, and the final hypothesis bank is constructed by selecting a balanced mix of hypotheses from both sources. This ensures a comprehensive and diverse set of hypotheses for further evaluation.
</p>
</div>
</div>
</div>
</section>
<section class="section hero is-small">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full">
<div class="content">
<h2 class="title is-3">Experiments</h2>
<div class="level-set has-text-justified">
<p>
The experiments evaluate the utility and novelty of the generated hypotheses using both automatic and human frameworks across diverse tasks.
</p>
<h3 class="subtitle is-4">Evaluation Framework</h3>
<p>
Hypotheses are evaluated on two dimensions: <strong>utility</strong> (improvement in decision-making) and <strong>novelty</strong> (unique insights). Evaluations include:
</p>
<ul>
<li><strong>Automatic Evaluation:</strong> Performance on in-distribution (IND) and out-of-distribution (OOD) datasets. Hypotheses are used to prompt LLMs for inference, focusing on OOD generalizability.</li>
<li><strong>Cross-Model Evaluation:</strong> Hypotheses generated by one model are tested using another model.</li>
<li><strong>Human Studies:</strong> Participants assess how hypotheses improve decision-making (utility) and whether they add unique perspectives (novelty).</li>
</ul>
<h3 class="subtitle is-4">Human Studies</h3>
<ul>
<li><strong>Study I (Utility):</strong> Participants, split into control and experimental groups, complete tasks with or without hypotheses. Results show hypotheses improve decision-making.</li>
<li><strong>Study II (Novelty):</strong> Participants compare data-driven and literature-based hypotheses to determine if one provides new information beyond the other.</li>
</ul>
<h3 class="subtitle is-4">Tasks</h3>
<ul>
<li><strong>Deception Detection:</strong> Identifying truthful vs. deceptive hotel reviews.</li>
<li><strong>AI-Generated Content Detection:</strong> Distinguishing between human- and AI-written stories. We use GPT generated stories (GPTGC) and Llama generated stories (LlamaGC)</li>
<li><strong>Persuasive Argument Prediction:</strong> Evaluating the persuasiveness of argument pairs.</li>
<li><strong>Mental Stress Detection:</strong> Detecting stress signals in Reddit posts.</li>
</ul>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container is-max-desktop">
<h2 class="title is-3">Results</h2>
<div class="level-set has-text-justified">
<p>
The results demonstrate the effectiveness of integrating literature-based and data-driven hypothesis generation methods.
</p>
<h3 class="subtitle is-4">Automatic Evaluation</h3>
<p>
Combining literature-based and data-driven methods produced the best performance across tasks. The integrated approach achieved an accuracy improvement of 11.92% over few-shot methods and 16.54% over literature-based methods for GPT, and 6.03% over few-shot methods and 14.97% over literature-based methods for Llama.
</p>
<p>
Our framework with literature + data showed significant advantages over zero-shot, few-shot, data-driven and literature-based methods, particularly in handling OOD datasets.
</p>
<img src="static/images/hypothesis-agent_table1.png" alt="OOD main results"/>
<p>
Accuracy scores on the held-out OOD datasets. Literature + Data outperforms all other methods in every
model and task configurations.
</p>
<h3 class="subtitle is-4">Human Evaluation</h3>
<p>
Generated hypotheses improved human decision-making in both Deception Detection and AIGC Detection. In AIGC Detection, accuracy increased by 14.19% (58.86% → 73.05%, p=0.01), and in Deception Detection, accuracy improved by 7.44% (57.14% → 64.58%, p=0.04). Participants used hypotheses in over 90% of decisions, with the most popular hypothesis used 44.55% of the time.
</p>
<img src="static/images/human_performance.png" alt="OOD main results"/>
<p>
Human performance on Deception Detection and AIGC Detection.
</p>
<p>
Participants rated 100% of the hypotheses as helpful, with over 40% finding them "Very helpful" or "Extremely helpful." Results from the novelty check study showed that 84% of hypotheses pairs in Deception Detection and 80% in AIGC Detection offered distinct insights, highlighting the strengths of combining literature-based and data-driven approaches.
</p>
</div>
</div>
</div>
</section>
<!-- Text box carousel -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop">
<h2 class="title is-3">Examples of Generated Hypotheses</h2>
<div id="text-carousel" class="carousel text-carousel">
<div class="item">
<div class="box">
<h3 class="subtitle">Deception Detection</h3>
<ul>
<li>Deceptive reviews often contain a higher frequency of first-person singular pronouns, while truthful reviews may use these pronouns less frequently.</li>
<li>The use of repetitive phrasing across multiple reviews is a strong indicator of deception, while truthful reviews are more likely to exhibit unique language and perspectives.</li>
<li>Reviews that provide specific accounts of the check-in and check-out processes, including exact times, the names of staff members involved, and descriptions of any unique features or services utilized (e.g., "I used the self-check-in kiosk at 3 PM"), are more likely to be truthful. Conversely, reviews that mention issues like long wait times or check-in problems without contextual details or specific examples (e.g., "the check-in took too long") are more likely to be deceptive.</li>
</ul>
</div>
</div>
<div class="item">
<div class="box">
<h3 class="subtitle">AI-Generated Content Detection</h3>
<ul>
<li>AI-generated texts tend to use more elaborate and descriptive language, including adjectives and adverbs, to create a sense of atmosphere and immersion. Human-written texts, on the other hand, tend to be more concise and straightforward in their language use.</li>
<li>Human-written texts are more likely to contain errors or idiosyncrasies in grammar and punctuation, reflecting the natural imperfections of human writing, while AI-generated texts typically maintain a higher level of grammatical accuracy.</li>
<li>Human-written texts tend to have a more conversational tone and colloquial language, while AI-generated texts tend to be more formal and lack idiomatic expressions.</li>
</ul>
</div>
</div>
<div class="item">
<div class="box">
<h3 class="subtitle">Persuasive Argument Prediction</h3>
<ul>
<li>Persuasive texts that incorporate rhetorical devices, such as rhetorical questions and direct appeals, are more likely to engage the reader and compel them to consider the writer's viewpoint.</li>
<li>Texts that utilize strong, action-oriented verbs are generally more persuasive, as they convey confidence and urgency, compelling the audience to take action.</li>
<li>Arguments that include a clear and compelling call to action are more persuasive, as they provide the audience with a specific next step to take, reinforcing the urgency and importance of the message.</li>
</ul>
</div>
</div>
<div class="item">
<div class="box">
<h3 class="subtitle">Mental Stress Detection</h3>
<ul>
<li>Posts that show erratic posting behavior or changes in tone (e.g., from positive to negative) are more likely to indicate stress, while consistent posting patterns with a stable tone are more likely to indicate no stress.</li>
<li>Posts that exhibit avoidance behaviors (e.g., avoiding social situations or responsibilities) are more likely to indicate stress, while posts that demonstrate proactive engagement with challenges are more likely to indicate no stress.</li>
<li>Posts that reflect on personal struggles with mental health or addiction (e.g., "I was a severe addict") are more likely to indicate that the poster has stress, while posts that discuss academic or professional experiences without emotional turmoil (e.g., "I've explained the aforementioned to people") are more likely to indicate that the poster does not have stress.</li>
</ul>
</div>
</div>
</div>
<!-- Navigation buttons -->
<button class="carousel-nav prev">❮</button>
<button class="carousel-nav next">❯</button>
</div>
</div>
</section>
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container is-max-desktop">
<h2 class="title is-3">Broader Impact</h2>
<div class="level-set has-text-justified">
<p>
This work introduces a novel framework for integrating literature-based and data-driven hypothesis generation, with the potential to transform scientific research. By enhancing the generalizability and utility of hypotheses, this approach can potentially accelerate discoveries across fields like biology, medicine, economics, and more.
</p>
<p>
However, the integration of automated tools raises important considerations. Potential biases in data or literature could propagate through the generated hypotheses, necessitating careful evaluation and curation. Moreover, ensuring transparency in the hypothesis generation process is crucial to avoid over-reliance on automation.
</p>
<p>
Despite these challenges, the proposed framework provides a powerful tool for advancing knowledge, empowering researchers, and supporting complex decision-making in real-world applications. Its ability to synthesize insights from both data and literature offers a promising direction for interdisciplinary research and societal impact.
</p>
</div>
</div>
</div>
</section>
<!-- Youtube video
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<h2 class="title is-3">Video Presentation</h2>
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="publication-video">
<iframe src="https://www.youtube.com/embed/JkaxUblCGz0" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</div>
</div>
</div>
</div>
</div>
</section>
End youtube video -->
<!-- Video carousel
<section class="hero is-small">
<div class="hero-body">
<div class="container">
<h2 class="title is-3">Another Carousel</h2>
<div id="results-carousel" class="carousel results-carousel">
<div class="item item-video1">
<video poster="" id="video1" autoplay controls muted loop height="100%">
<source src="static/videos/carousel1.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video2">
<video poster="" id="video2" autoplay controls muted loop height="100%">
<source src="static/videos/carousel2.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video3">
<video poster="" id="video3" autoplay controls muted loop height="100%">\
<source src="static/videos/carousel3.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
End video carousel -->
<!-- Paper poster
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<h2 class="title">Poster</h2>
<iframe src="static/pdfs/sample.pdf" width="100%" height="550">
</iframe>
</div>
</div>
</section>
End paper poster -->
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@misc{liu2024literaturemeetsdatasynergistic,
title={Literature Meets Data: A Synergistic Approach to Hypothesis Generation},
author={Haokun Liu and Yangqiaoyu Zhou and Mingxuan Li and Chenfei Yuan and Chenhao Tan},
year={2024},
eprint={2410.17309},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2410.17309},
}</code></pre>
<pre>
<code>
@misc{zhou2024hypothesisgenerationlargelanguage,
title={Hypothesis Generation with Large Language Models},
author={Yangqiaoyu Zhou and Haokun Liu and Tejes Srivastava and Hongyuan Mei and Chenhao Tan},
year={2024},
eprint={2404.04326},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2404.04326},
}
</code>
</pre>
</div>
</section>
<!--End BibTex citation -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
<br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>