-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGUI.py
193 lines (157 loc) · 6.03 KB
/
GUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import tkinter as tk
from tkinter import *
from PIL import ImageTk, Image
import torch
import torch.nn.functional as F
from torchvision import datasets
from torch.utils.data import DataLoader
from PIL import Image
import PIL
import numpy as np
import torchvision
from torchvision import transforms
import os
from torch.utils.data import Dataset
import torch.nn as nn
import cv2
import tensorflow as tf
import torchvision.transforms as T
import random
gpus = tf.config.list_physical_devices('GPU')
print(gpus)
for gpu in gpus:
print("Name:", gpu.name, " Type:", gpu.device_type)
import torch
import torch.optim as optim
if torch.cuda.is_available():
dev = "cuda:0"
print("gpu up")
else:
dev = "cpu"
device = torch.device(dev)
learning_rate = 0.0003
num_epochs = 10
batch_size = 10
in_channels = 3
def to_tensor_and_normalize(imagepil):
ChosenTransforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=0, std=1), torchvision.transforms.Resize((128, 128))])
return ChosenTransforms(imagepil)
class Objects(Dataset):
def __init__(self, root_dir):
super(Objects, self).__init__()
self.root_dir = root_dir
self.all_filenames = os.listdir(root_dir)
def __len__(self):
return len(self.all_filenames)
def __getitem__(self, idx):
selected_filename = self.all_filenames[idx]
imagepil = PIL.Image.open(os.path.join(self.root_dir, selected_filename)).convert('RGB')
image = to_tensor_and_normalize(imagepil)
return image
dt = Objects("C:/Users/miret/Desktop/VAE/CustomDataset")
train_loader = DataLoader(dataset= dt,
batch_size=batch_size,
shuffle=True,
)
class Reshape(nn.Module):
def _init_(self, *args):
super()._init_()
self.shape = args
def forward(self, x):
return x.view(self.shape)
class Trim(nn.Module):
def _init_(self, *args):
super()._init_()
def forward(self, x):
return x[:, :, :128, :128]
class VAE(nn.Module):
def __init__(self, latent_dim):
super().__init__()
self.dist_dim = latent_dim
self.encoder = nn.Sequential(
#128x128x3
nn.Conv2d(in_channels, 16, stride=(1, 1), kernel_size=(3, 3), padding=1),#128x128x16
nn.LeakyReLU(0.01),
nn.Conv2d(16, 32, stride=(2, 2), kernel_size=(3, 3), padding=1),#64x64x32
nn.LeakyReLU(0.01),
nn.Conv2d(32, 64, stride=(2, 2), kernel_size=(3, 3), padding=1),#32x32x64
nn.LeakyReLU(0.01),
nn.Conv2d(64, 64, stride=(1, 1), kernel_size=(3, 3), padding=1),#32x32x64
nn.Flatten(),
)
self.z_mean = torch.nn.Linear(65536, self.dist_dim)
self.z_log_var = torch.nn.Linear(65536, self.dist_dim)
self.decoder = nn.Sequential(
torch.nn.Linear(self.dist_dim, 65536),
Reshape(-1, 64, 32, 32),
nn.ConvTranspose2d(64, 64, stride=(1, 1), kernel_size=(3, 3), padding=1),
nn.LeakyReLU(0.01),
nn.ConvTranspose2d(64, 32, stride=(2, 2), kernel_size=(3, 3), padding=1),
nn.LeakyReLU(0.01),
nn.ConvTranspose2d(32, 16, stride=(2, 2), kernel_size=(3, 3), padding=0),
nn.LeakyReLU(0.01),
nn.ConvTranspose2d(16, in_channels, stride=(1, 1), kernel_size=(3, 3), padding=0),
Trim(),
nn.Sigmoid()
)
def encoding(self, x, genImgs):
x = self.encoder(x)
z_mean, z_log_var = self.z_mean(x), self.z_log_var(x)
encoded = []
for i in range(genImgs):
encoded.append(self.sampling(z_mean, z_log_var))
return encoded
def sampling(self, z_mean, z_log_var):
eps = torch.randn(z_mean.size(0), z_mean.size(1)).cuda().float()
z = z_mean + eps * torch.exp(z_log_var/2.0)
return z
def forward(self, x):
x = self.encoder(x)
z_mean, z_log_var = self.z_mean(x), self.z_log_var(x)
encoded = self.sampling(z_mean, z_log_var)
decoded = self.decoder(encoded)
return encoded, z_mean, z_log_var, decoded
imgs = next(iter(train_loader))
# Checking the dataset
for images in train_loader:
print(images.shape)
break
model=torch.load('modelVAE.pt')
# model = torch._load_('model.pt')
model.eval()
# print(dir(model))
def show_images():
genImgs = my_scale.get()
saved = model.encoding((imgs.cuda().float()), genImgs)
reImages = []
for i in range(genImgs):
reImages.append(model.decoder(saved[i]))
pickedImage =random.randint(0, batch_size)
image =imgs[pickedImage]
image = (image.detach().to(torch.device('cpu')))
image = np.asarray(image).transpose((2, 1, 0))
image = Image.fromarray((image*255).astype(np.uint8))
photo = ImageTk.PhotoImage(image)
label = Label(master, image = photo)
label.image = photo
label.grid(row=2, column=1)
for i in range(genImgs):
image = reImages[i][pickedImage]
image = (image.detach().to(torch.device('cpu')))
image = np.asarray(image).transpose((2, 1, 0))
image = Image.fromarray((image*255).astype(np.uint8))
photo = ImageTk.PhotoImage(image)
label = Label(master, image = photo)
label.image = photo
label.grid(row= i+(i%2)+3, column=(int((i/2)%2))+1)
#3
#
master = Tk()
l1=tk.Label(master,text="Scale")
l1.grid(row=1,column=1)
my_scale = tk.Scale(master, from_=0, to=12, orient='horizontal')
my_scale.grid(row=1,column=1)
slider = Button(master, text='Generate', command=show_images)
slider.grid(row = 1, column=2, sticky = E)
master.mainloop()