This repository has been archived by the owner on Aug 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvanilla.go
284 lines (244 loc) · 8.68 KB
/
vanilla.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package gokalman
import (
"fmt"
"math"
"github.com/gonum/matrix/mat64"
)
// NewVanilla returns a new Vanilla KF. To get the next estimate, simply push to
// the MeasChan the next measurement and read from StateEst and MeasEst to get
// the next state estimate (\hat{x}_{k+1}^{+}) and next measurement estimate (\hat{y}_{k+1}).
// The Covar channel stores the next covariance of the system (P_{k+1}^{+}).
// Parameters:
// - x0: initial state
// - Covar0: initial covariance matrix
// - F: state update matrix
// - G: control matrix (if all zeros, then control vector will not be used)
// - H: measurement update matrix
// - n: Noise
func NewVanilla(x0 *mat64.Vector, Covar0 mat64.Symmetric, F, G, H mat64.Matrix, noise Noise) (*Vanilla, *VanillaEstimate, error) {
// Let's check the dimensions of everything here to panic ASAP.
if err := checkMatDims(x0, Covar0, "x0", "Covar0", rows2cols); err != nil {
return nil, nil, err
}
if err := checkMatDims(F, Covar0, "F", "Covar0", rows2cols); err != nil {
return nil, nil, err
}
if err := checkMatDims(H, x0, "H", "x0", cols2rows); err != nil {
return nil, nil, err
}
// Populate with the initial values.
rowsH, _ := H.Dims()
cr, _ := Covar0.Dims()
predCovar := mat64.NewSymDense(cr, nil)
est0 := VanillaEstimate{x0, mat64.NewVector(rowsH, nil), mat64.NewVector(rowsH, nil), Covar0, predCovar, nil}
return &Vanilla{F, G, H, noise, !IsNil(G), est0, est0, 0, false}, &est0, nil
}
// NewPurePredictorVanilla returns a new Vanilla KF which only does prediction.
func NewPurePredictorVanilla(x0 *mat64.Vector, Covar0 mat64.Symmetric, F, G, H mat64.Matrix, noise Noise) (*Vanilla, *VanillaEstimate, error) {
// Let's check the dimensions of everything here to panic ASAP.
if err := checkMatDims(x0, Covar0, "x0", "Covar0", rows2cols); err != nil {
return nil, nil, err
}
if err := checkMatDims(F, Covar0, "F", "Covar0", rows2cols); err != nil {
return nil, nil, err
}
if err := checkMatDims(H, x0, "H", "x0", cols2rows); err != nil {
return nil, nil, err
}
// Populate with the initial values.
rowsH, _ := H.Dims()
cr, _ := Covar0.Dims()
predCovar := mat64.NewSymDense(cr, nil)
est0 := VanillaEstimate{x0, mat64.NewVector(rowsH, nil), mat64.NewVector(rowsH, nil), Covar0, predCovar, nil}
return &Vanilla{F, G, H, noise, !IsNil(G), est0, est0, 0, true}, &est0, nil
}
// Vanilla defines a vanilla kalman filter. Use NewVanilla to initialize.
type Vanilla struct {
F mat64.Matrix
G mat64.Matrix
H mat64.Matrix
Noise Noise
needCtrl bool
prevEst, initEst VanillaEstimate
step int
predictionOnly bool
}
func (kf *Vanilla) String() string {
return fmt.Sprintf("F=%v\nG=%v\nH=%v\n%s", mat64.Formatted(kf.F, mat64.Prefix(" ")), mat64.Formatted(kf.G, mat64.Prefix(" ")), mat64.Formatted(kf.H, mat64.Prefix(" ")), kf.Noise)
}
// GetStateTransition returns the F matrix.
func (kf *Vanilla) GetStateTransition() mat64.Matrix {
return kf.F
}
// GetInputControl returns the G matrix.
func (kf *Vanilla) GetInputControl() mat64.Matrix {
return kf.G
}
// GetMeasurementMatrix returns the H matrix.
func (kf *Vanilla) GetMeasurementMatrix() mat64.Matrix {
return kf.H
}
// SetStateTransition updates the F matrix.
func (kf *Vanilla) SetStateTransition(F mat64.Matrix) {
kf.F = F
}
// SetInputControl updates the F matrix.
func (kf *Vanilla) SetInputControl(G mat64.Matrix) {
kf.G = G
}
// SetMeasurementMatrix updates the H matrix.
func (kf *Vanilla) SetMeasurementMatrix(H mat64.Matrix) {
kf.H = H
}
// SetNoise updates the Noise.
func (kf *Vanilla) SetNoise(n Noise) {
kf.Noise = n
}
// GetNoise updates the F matrix.
func (kf *Vanilla) GetNoise() Noise {
return kf.Noise
}
// Reset reinitializes the KF with its initial estimate.
func (kf *Vanilla) Reset() {
kf.prevEst = kf.initEst
kf.step = 0
kf.Noise.Reset()
}
// Update implements the KalmanFilter interface.
func (kf *Vanilla) Update(measurement, control *mat64.Vector) (est Estimate, err error) {
if err = checkMatDims(control, kf.G, "control (u)", "G", rows2cols); kf.needCtrl && err != nil {
return nil, err
}
if err = checkMatDims(measurement, kf.H, "measurement (y)", "H", rows2rows); err != nil {
return nil, err
}
// Prediction step.
var xKp1Minus, xKp1Minus1, xKp1Minus2 mat64.Vector
xKp1Minus1.MulVec(kf.F, kf.prevEst.State())
if kf.needCtrl {
xKp1Minus2.MulVec(kf.G, control)
xKp1Minus.AddVec(&xKp1Minus1, &xKp1Minus2)
} else {
xKp1Minus = xKp1Minus1
}
xKp1Minus.AddVec(&xKp1Minus, kf.Noise.Process(kf.step))
// P_{k+1}^{-}
var Pkp1Minus, FP, FPFt mat64.Dense
FP.Mul(kf.F, kf.prevEst.Covariance())
FPFt.Mul(&FP, kf.F.T())
Pkp1Minus.Add(&FPFt, kf.Noise.ProcessMatrix())
// Compute estimated measurement update \hat{y}_{k}
var ykHat mat64.Vector
ykHat.MulVec(kf.H, kf.prevEst.State())
ykHat.AddVec(&ykHat, kf.Noise.Measurement(kf.step))
// Kalman gain
var PHt, HPHt, Kkp1 mat64.Dense
PHt.Mul(&Pkp1Minus, kf.H.T())
HPHt.Mul(kf.H, &PHt)
HPHt.Add(&HPHt, kf.Noise.MeasurementMatrix())
if ierr := HPHt.Inverse(&HPHt); ierr != nil {
//panic(fmt.Errorf("could not invert `H*P_kp1_minus*H' + R`: %s", ierr))
return nil, fmt.Errorf("could not invert `H*P_kp1_minus*H' + R`: %s", ierr)
}
Kkp1.Mul(&PHt, &HPHt)
if kf.predictionOnly {
// Note that in the case of a pure prediction, we set the prediction
// covariance and the covariance to Pkp1Minus.
Pkp1MinusSym, _ := AsSymDense(&Pkp1Minus)
rowsH, _ := kf.H.Dims()
est = VanillaEstimate{&xKp1Minus, &ykHat, mat64.NewVector(rowsH, nil), Pkp1MinusSym, Pkp1MinusSym, &Kkp1}
kf.prevEst = est.(VanillaEstimate)
kf.step++
return
}
// Measurement update
var innov, xkp1Plus, xkp1Plus1, xkp1Plus2 mat64.Vector
xkp1Plus1.MulVec(kf.H, &xKp1Minus) // Predicted measurement
innov.SubVec(measurement, &xkp1Plus1) // Innovation vector
if rX, _ := innov.Dims(); rX == 1 {
// xkp1Plus1 is a scalar and mat64 won't be happy, so fiddle around to get a vector.
var sKkp1 mat64.Dense
sKkp1.Scale(innov.At(0, 0), &Kkp1)
rGain, _ := sKkp1.Dims()
xkp1Plus2.AddVec(sKkp1.ColView(0), mat64.NewVector(rGain, nil))
} else {
xkp1Plus2.MulVec(&Kkp1, &innov)
}
xkp1Plus.AddVec(&xKp1Minus, &xkp1Plus2)
xkp1Plus.AddVec(&xkp1Plus, kf.Noise.Process(kf.step))
var Pkp1Plus, Pkp1Plus1, Kkp1H, Kkp1R, Kkp1RKkp1 mat64.Dense
Kkp1H.Mul(&Kkp1, kf.H)
n, _ := Kkp1H.Dims()
Kkp1H.Sub(Identity(n), &Kkp1H)
Pkp1Plus1.Mul(&Kkp1H, &Pkp1Minus)
Pkp1Plus.Mul(&Pkp1Plus1, Kkp1H.T())
Kkp1R.Mul(&Kkp1, kf.Noise.MeasurementMatrix())
Kkp1RKkp1.Mul(&Kkp1R, Kkp1.T())
Pkp1Plus.Add(&Pkp1Plus, &Kkp1RKkp1)
Pkp1MinusSym, err := AsSymDense(&Pkp1Minus)
if err != nil {
return nil, err
}
Pkp1PlusSym, err := AsSymDense(&Pkp1Plus)
if err != nil {
return nil, err
}
est = VanillaEstimate{&xkp1Plus, &ykHat, &innov, Pkp1PlusSym, Pkp1MinusSym, &Kkp1}
kf.prevEst = est.(VanillaEstimate)
kf.step++
return
}
// VanillaEstimate is the output of each update state of the Vanilla KF.
// It implements the Estimate interface.
type VanillaEstimate struct {
state, meas, innovation *mat64.Vector
covar, predCovar mat64.Symmetric
gain mat64.Matrix
}
// IsWithinNσ returns whether the estimation is within the 2σ bounds.
func (e VanillaEstimate) IsWithinNσ(N float64) bool {
for i := 0; i < e.state.Len(); i++ {
nσ := N * math.Sqrt(e.covar.At(i, i))
if e.state.At(i, 0) > nσ || e.state.At(i, 0) < -nσ {
return false
}
}
return true
}
// IsWithin2σ returns whether the estimation is within the 2σ bounds.
func (e VanillaEstimate) IsWithin2σ() bool {
return e.IsWithinNσ(2)
}
// State implements the Estimate interface.
func (e VanillaEstimate) State() *mat64.Vector {
return e.state
}
// Measurement implements the Estimate interface.
func (e VanillaEstimate) Measurement() *mat64.Vector {
return e.meas
}
// Innovation implements the Estimate interface.
func (e VanillaEstimate) Innovation() *mat64.Vector {
return e.innovation
}
// Covariance implements the Estimate interface.
func (e VanillaEstimate) Covariance() mat64.Symmetric {
return e.covar
}
// PredCovariance implements the Estimate interface.
func (e VanillaEstimate) PredCovariance() mat64.Symmetric {
return e.predCovar
}
// Gain the Estimate interface.
func (e VanillaEstimate) Gain() mat64.Matrix {
return e.gain
}
func (e VanillaEstimate) String() string {
state := mat64.Formatted(e.State(), mat64.Prefix(" "))
meas := mat64.Formatted(e.Measurement(), mat64.Prefix(" "))
covar := mat64.Formatted(e.Covariance(), mat64.Prefix(" "))
gain := mat64.Formatted(e.Gain(), mat64.Prefix(" "))
innov := mat64.Formatted(e.Innovation(), mat64.Prefix(" "))
predp := mat64.Formatted(e.PredCovariance(), mat64.Prefix(" "))
return fmt.Sprintf("{\ns=%v\ny=%v\nP=%v\nK=%v\nP-=%v\ni=%v\n}", state, meas, covar, gain, predp, innov)
}