-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCNNtrain.py
240 lines (199 loc) · 7.63 KB
/
CNNtrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import time
import numpy as np
# # from tensorflow.contrib.slim.python.slim.nets.resnet_v2 import resnet_v2_152
# from tensorflow.contrib.slim.python.slim.nets.vgg import vgg_16
# import skimage
# import skimage.io
# import skimage.transform
import tensorflow as tf
from numpy import mat
import matplotlib.pyplot as plt
import sklearn
import pandas as pd
n_epoch =200
print_freq =2
batch_size =32
lr = 1e-4
k0 = 63 # num of neighbors
pre_len = 9
training_epoch = 5000
x = tf.placeholder(tf.float32, shape=[None,12,k0+1,1])
# 输出
y_ = tf.placeholder(tf.float32, shape=[None, 1], name='y_')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(inputx, W):
return tf.nn.conv2d(inputx, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(inputx):
return tf.nn.max_pool(inputx, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def max_pool_1x2(inputx):
return tf.nn.max_pool(inputx, ksize=[1, 1, 2, 1],
strides=[1, 1, 2, 1], padding='SAME')
def conv_layer(inputx, size, i_chn, o_chn):
W_conv = weight_variable([size, size, i_chn, o_chn])
b_conv = bias_variable([o_chn])
h_conv = tf.nn.relu(conv2d(inputx, W_conv) + b_conv)
return h_conv
h_conv1 = conv_layer(x, 3, 1, 32)
h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = conv_layer(h_pool1, 3, 32, 64)
h_pool2 = max_pool_2x2(h_conv2)
h_conv3 = conv_layer(h_pool2, 3, 64, 128)
h_pool3 = max_pool_2x2(h_conv3)
h_conv4 = conv_layer(h_pool3, 3, 128, 128)
h_pool4 = max_pool_1x2(h_conv4)
fc_dim = 512
pool_dim = 128
# W_fc1 = weight_variable([pool_dim, fc_dim])
# b_fc1 = bias_variable([fc_dim])
# h_pool3_flat = tf.reshape(h_pool3, [-1, pool_dim])
# h_fc1 = tf.nn.relu(tf.matmul(h_pool3_flat, W_fc1) + b_fc1)
h_pool3_flat = tf.nn.avg_pool(h_pool4, [1,h_pool4.get_shape()[1],h_pool4.get_shape()[2],1], [1,1,1,1],padding='VALID')
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_pool3_flat, keep_prob)
h_fc1 = tf.reshape(h_fc1_drop, [-1, pool_dim])
W_fc2 = weight_variable([pool_dim, 1])
b_fc2 = bias_variable([1])
y_conv= tf.matmul(h_fc1, W_fc2) + b_fc2
lambda_loss = 0.005
Lreg = lambda_loss * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables())
##loss
loss = tf.reduce_mean(tf.nn.l2_loss(y_conv-y_) + Lreg)
##rmse
error = tf.sqrt(tf.reduce_mean(tf.square(y_conv-y_)))
optimizer = tf.train.AdamOptimizer(lr).minimize(loss)
# train -- (time, sensor)
trainmatrix=np.array(np.zeros((288*34,228)),dtype=float)
# test -- (record, time)
testmatrix=np.array(np.zeros((80*228,12)),dtype=float)
for i in range(34):
train_df = pd.read_csv('../data/train/'+str(i)+'.csv', header=None).fillna(0)
train_df.head()
### dataframe to array
train = train_df.values
for j in range(288):
trainmatrix[i*288+j,:]=train[j,:]
for i in range(80):
test_df = pd.read_csv('../data/test/'+str(i)+'.csv', header=None).fillna(0)
test_df.head()
### dataframe to array
test = test_df.values
readmatrix=np.mat(np.zeros((12,228)),dtype=float)
for j in range(12):
readmatrix[j,:]=test[j,:]
testmatrix[i*228:(i*228+228),:]=np.transpose(readmatrix)
dis_df = pd.read_csv('../data/distance.csv', header=None)
dis_df.head()
dis = dis_df.values
# trainmatrix.shape (9792, 228)
# testmatrix.shape (18240, 12)
# train_max = np.max(trainmatrix)
# test_max = np.max(testmatrix)
# max_value = np.max([train_max, test_max])
# trainmatrix = trainmatrix/max_value
# testmatrix = testmatrix/max_value
mean = np.mean(trainmatrix)
std = np.std(trainmatrix)
trainmatrix = (trainmatrix-mean)/std
max_value = std
testmatrix = (testmatrix-mean)/std
#[sensor, neighbor] (228, neighbor+1)
near = np.array(np.zeros((228, k0+1)), dtype=int)
neardst = np.array(np.zeros((228, k0+1)))
for i in range(228):
dist = list(dis[i])
for j in range(k0+1):
m = np.min(dist)
k = dist.index(m)
near[i,j] = k
neardst[i,j] = m
dist[k] = 10000000
if near[i,0] != i:
near[i,0], near[i,1] = near[i,1], near[i,0]
print(near) #(228, neighbor+1)
predict = [0 for i in range(testmatrix.shape[0]*3)] #15,30,45
Xgroup = [1 for i in range(trainmatrix.shape[0]-20)] #train, val
# 20: 训练标签,由v1预测v21,索引最大的训练样本是(全部-20)
# train & validate
for i in range(8000, trainmatrix.shape[0]-20):
Xgroup[i] = 0
Xgroup = np.array(Xgroup)
err = 0
errx = 0
time_start = time.time()
time_len = trainmatrix.shape[0]-20
for i in range(1):
### 训练、验证、测试数据集 ###
Xtrain = np.array(np.zeros((time_len, 12, k0+1, 1)), dtype=float)
# Ytrain15 = np.array(np.zeros((time_len, 1)), dtype=float)
# Ytrain30 = np.array(np.zeros((time_len, 1)), dtype=float)
Ytrain45 = np.array(np.zeros((time_len, 1)), dtype=float)
for j in range(time_len):
Xtrain[j,:,0,0] = trainmatrix[j:(j+12), i]
for l in range(k0):
Xtrain[j,:,l+1,0]=trainmatrix[j:(j+12),near[i,l+1]]
# Ytrain15[j,0] = trainmatrix[j+14,i]
# Ytrain30[j] = trainmatrix[j+17,i]
Ytrain45[j] = trainmatrix[j+20,i]
# split
X_train = Xtrain[Xgroup>=1]
X_val = Xtrain[Xgroup==0]
# Y_train15 = Ytrain15[Xgroup>=1]
# Y_val15 = Ytrain15[Xgroup==0]
# Y_train30 = Ytrain30[Xgroup>=1]
# Y_val30 = Ytrain30[Xgroup==0]
Y_train45 = Ytrain45[Xgroup>=1]
Y_val45 = Ytrain45[Xgroup==0]
# test
Xtest = np.array(np.zeros((80,12,k0+1,1)),dtype=float)
for j in range(80):
Xtest[j,:,0,0] = testmatrix[j*228+i,:]
for l in range(k0):
Xtest[j,:,l+1,0]=testmatrix[j*228+near[i,l+1],:]
###### Initialize session ######
variables = tf.global_variables()
saver = tf.train.Saver(tf.global_variables())
#sess = tf.Session()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
sess.run(tf.global_variables_initializer())
out = 'out'
#out = 'out/%s_%s'%(model_name,'perturbation')
path1 = 'lr%r_batch%r_pre%r_epoch%r'%(lr,batch_size,pre_len,training_epoch)
path = os.path.join(out,path1)
if not os.path.exists(path):
os.makedirs(path)
test_file = path1+'_record.txt'
batch_loss = []
totalbatch = int(X_train.shape[0]/batch_size)
for epoch in range(training_epoch):
data_num = X_train.shape[0]
index = np.arange(data_num)
np.random.shuffle(index)
randomXtr = X_train[index]
randomYtr = Y_train45[index]
for m in range(totalbatch):
mini_batch = randomXtr[m * batch_size : (m+1) * batch_size]
mini_label = randomYtr[m * batch_size : (m+1) * batch_size]
_, loss1, rmse1, train_output = sess.run([optimizer, loss, error, y_conv],
feed_dict = {x:mini_batch, y_:mini_label, keep_prob:0.6})
# Test completely at every epoch
loss2, rmse2, test_output = sess.run([loss, error, y_conv],
feed_dict = {x:X_val, y_:Y_val45, keep_prob:1.0})
print('Iter:{}'.format(epoch),
'train_rmse:{:.4}'.format(rmse1 * max_value),
'test_loss:{:.4}'.format(loss2),
'test_rmse:{:.4}'.format(rmse2 * max_value))
with open(test_file,'a+') as test_f:
test_f.write("TESTER>> step: %d >> train_set rmse: %.4f >> valid_set rmse: %.4f\n"%(epoch, rmse1 * max_value, rmse2 * max_value))
if (epoch % 100 == 0):
#print("####### TEST OUTPUT #######", test_output)
saver.save(sess, path+'/TGCN_pre_%r'%epoch, global_step = epoch)
time_end = time.time()
print(time_end-time_start,'s')