-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblobber.py
254 lines (194 loc) · 5.21 KB
/
blobber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import math
import cv2 as cv
import numpy as np
import ball_net as bn
import sys
cnt = 0
R = 60
EPS = 1e-6
EPS2 = 0.5
STATUS_INIT = 0
STATUS_STATIC = 1
STATUS_DIRECTED = 2
def pt_dist(x1, y1, x2, y2):
dx = x1 - x2
dy = y1 - y2
return math.sqrt(dx * dx + dy * dy)
class Blob:
cnt = 1
def __init__(self, x, y, r, a):
self.id = Blob.cnt
Blob.cnt += 1
self.pts = [[x, y]]
self.pp = [[r, a]]
self.status = STATUS_INIT
self.v = None
self.age = a
self.nx = None
self.ny = None
def fit(self, x, y, r):
d = pt_dist(self.pts[-1][0], self.pts[-1][1], x, y)
return d < R, d
def add(self, x, y, r, a):
self.pts.append([x, y])
self.pp.append([r, a])
self.age = a
if len(self.pts) > 2:
#if self.status == STATUS_DIRECTED and self.nx is not None:
# print("Predict", self.nx, self.ny, "vs", x, y)
dx1 = self.pts[-2][0] - self.pts[-3][0]
dy1 = self.pts[-2][1] - self.pts[-3][1]
dx2 = x - self.pts[-2][0]
dy2 = y - self.pts[-2][1]
d1 = pt_dist(self.pts[-2][0], self.pts[-2][1], x, y)
d2 = pt_dist(self.pts[-2][0], self.pts[-2][1], self.pts[-3][0], self.pts[-3][1])
if dx1 * dx2 > 0 and dy1 * dy2 > 0 and d1 > 5 and d2 > 5:
self.status = STATUS_DIRECTED
#print("Directed", self.pts)
#self.predict()
elif self.status != STATUS_DIRECTED:
self.status = STATUS_STATIC
def predict(self):
npts = np.array(self.pts)
l = len(self.pts) + 1
idx = np.array(range(1, l))
kx = np.polyfit(idx, npts[:,0], 1)
fkx = np.poly1d(kx)
ky = np.polyfit(idx, npts[:,1], 1)
fky = np.poly1d(ky)
self.nx = fkx(l)
self.ny = fky(l)
return self.nx, self.ny
B = []
bb = None
prev_bb = None
def get_ball_blob():
return bb
def find_fblob(x, y, r):
global B, cnt
rbp = []
sbp = []
for b in B:
ft, d = b.fit(x, y, r)
if ft:
if cnt - b.age < 4:
rbp.append([b,d])
elif b.status == STATUS_STATIC:
sbp.append([b,d])
if len(sbp) + len(rbp) == 0:
return None
rbp.sort(key = lambda e: e[1])
if len(rbp) > 0:
return rbp[0][0]
sbp.sort(key = lambda e: e[1])
return sbp[0][0]
def handle_blob(x, y, r):
global B, cnt, bb
b = find_fblob(x, y, r)
if b is None:
B.append(Blob(x, y, r, cnt))
return
b.add(x, y, r, cnt)
if b.status == STATUS_DIRECTED:
if bb is None:
bb = b
elif len(b.pts) > len(bb.pts):
bb = b
def begin_gen():
global bb, prev_bb
prev_bb = bb
bb = None
def end_gen():
global cnt, bb
cnt += 1
def handle_blobs(mask, frame):
cnts, _ = cv.findContours(mask, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE)
k = 0
begin_gen()
for c in cnts:
rx,ry,rw,rh = cv.boundingRect(c)
mn = min(rw, rh)
mx = max(rw, rh)
r = mx / mn
if mn < 10 or mx > 40 or r > 1.5:
continue
cut_m = mask[ry : ry + rh, rx : rx + rw]
blob, nz = check_blob(cut_m, 0, 0, rw, rh)
if not blob:
continue
pnz = nz / (rw * rh)
if pnz < 0.5:
continue
cut_f = frame[ry : ry + rh, rx : rx + rw]
cut_c = cv.bitwise_and(cut_f,cut_f,mask = cut_m)
if bn.check_pic(cut_c) != 0:
continue
((x, y), r) = cv.minEnclosingCircle(c)
handle_blob(int(x), int(y), int(r))
k += 1
end_gen()
def check_blob(pic, x, y, w, h):
dy = int(h / 5)
y0 = y + 2 * dy
cut_h = pic[y0 : y0 + dy, x : x + w]
dx = int(w / 5)
x0 = x + 2 * dx
cut_v = pic[y : y + h, x0 : x0 + dx]
hnz = cv.countNonZero(cut_h)
vnz = cv.countNonZero(cut_v)
nz = cv.countNonZero(pic)
mn = min(hnz, vnz)
r = max(hnz, vnz) / mn if mn > 0 else 1000
return r < 1.5 and hnz / nz > 0.15 and vnz / nz > 0.15, nz
def draw_ball(pic):
bb = get_ball_blob()
if bb:
cv.circle(pic, (bb.pts[-1][0], bb.pts[-1][1]), 10, (0, 200, 0), 3)
else:
if prev_bb:
x, y = prev_bb.predict()
cv.circle(pic, (int(x), int(y)), 10, (0, 200, 0), 3)
def draw_ball_path(pic):
bb = get_ball_blob()
if bb:
for p in bb.pts:
cv.circle(pic, (p[0], p[1]), 3, (150, 150, 150), -1)
def draw_blobs(w, h):
pic = np.zeros((h, w, 3), np.uint8)
for b in B:
clr = (200, 200, 200)
if b.status == STATUS_STATIC:
clr = (0, 200, 0)
elif b.status == STATUS_DIRECTED:
clr = (200, 0, 0)
if not b.v is None:
cv.line(pic,(b.pts[0][0], b.pts[0][1]),(b.pts[-1][0], b.pts[-1][1]),(255, 0, 0), 1)
for p in b.pts:
cv.circle(pic, (p[0], p[1]), 3, clr, -1)
draw_ball(pic)
return pic
def test_clip(path):
vs = cv.VideoCapture(path)
backSub = cv.createBackgroundSubtractorMOG2()
n = 0
while(True):
ret, frame = vs.read()
if not ret or frame is None:
break
h = int(frame.shape[0] / 2)
w = int(frame.shape[1] / 2)
frame = cv.resize(frame, (w, h))
mask = backSub.apply(frame)
mask = cv.dilate(mask, None)
mask = cv.GaussianBlur(mask, (15, 15),0)
ret,mask = cv.threshold(mask,0,255,cv.THRESH_BINARY | cv.THRESH_OTSU)
handle_blobs(mask, frame)
pic = draw_blobs(w, h)
cv.imshow('frame', pic)
cv.imwrite("frames/frame-{:03d}.jpg".format(n), pic)
if cv.waitKey(10) == 27:
break
n += 1
if __name__ == "__main__":
test_clip(sys.argv[1])
#test_clip("D:/Videos/aus4.avi")