-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
145 lines (123 loc) · 5.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
from network.network import model
from dataloader.dataloader import Volleyball_loader
import numpy as np
import random
import torch.backends.cudnn as cudnn
import argparse
import os
def arg_parser():
parser = argparse.ArgumentParser(description='PyTorch volleyball project')
parser.add_argument('root', metavar='DIR', default="", type=str,
help='path to dataset')
parser.add_argument('--affix', default="jpg", type=str,
help='image affix')
parser.add_argument('--resume', type=str,
help='resume process of model training')
parser.add_argument('--checkpoint_path', default="./checkpoint", type=str,
help='where to save model checkpoint')
parser.add_argument('--batch_size', default=8, type=int,
help='The batchsize to train classifier')
parser.add_argument('--gpu_num', default=0, type=int,
help='How many gpu to train model? set 0 to disable gpu training')
parser.add_argument('--seed', default=2020, type=int,
help='Set a seed for reproduction purpose')
parser.add_argument('--resize_height', default=64, type=int,
help='provide height here if you need to resize')
parser.add_argument('--resize_width', default=64, type=int,
help='provide width here if you need to resize')
parser.add_argument('--split_ratio', default=0.1, type=float,
help='provide split ratio for train/test split')
parser.add_argument('--epochs', default=10, type=int,
help='How many epochs do you want to train your model')
parser.add_argument('--lr', default=0.01, type=float,
help='provide learning rate here to train your model')
parser.add_argument('--print_step', default=40, type=int,
help='provide print step to print training stats')
args = parser.parse_args()
return args
if __name__ == "__main__":
# model required parameters start here
args = arg_parser()
scale = (args.resize_width, args.resize_height)
# Setup seed for reproduction purpose
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# General setup
gpu_ids = []
train_dataset = Volleyball_loader(args.root, args.affix, scale=scale, mode="train", split_ratio=args.split_ratio)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size = args.batch_size, shuffle = True)
val_dataset = Volleyball_loader(args.root, args.affix, scale=scale, mode="val", split_ratio=args.split_ratio)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size = 1, shuffle = True)
print("Total number of training samples are {} and validation samples are {}".format(len(train_dataloader),
len(val_dataloader)))
model = model(3, 32, 64, 32, 2)
opt = torch.optim.SGD(model.parameters(), lr = args.lr)
criterion = torch.nn.CrossEntropyLoss()
cudnn.benchmark = True
if args.resume:
if os.path.isfile(args.resume):
print("Reloading checkpoint: {}".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
opt.load(checkpoint['optimizer'])
else:
print("The requested checkpoint is not available!")
else:
print("No checkpoint has been reloaded!")
if torch.cuda.is_available() and args.gpu_num>0:
gpu_ids = [i for i in range(args.gpu_num)]
model.to(gpu_ids[0])
model = torch.nn.DataParallel(model, gpu_ids)
criterion = criterion.cuda(gpu_ids[0])
else:
print("GPU is not available or not specified. Run with CPU mode")
current_best_acc = float("-inf")
if not os.path.exists(args.checkpoint_path):
os.makedirs(args.checkpoint_path, exist_ok=False)
for epoch in range(args.epochs):
train_epoch_loss, train_epoch_acc = 0, 0
# Switch to train mode
model.train()
# setup lr decay
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in opt.param_groups:
param_group['lr'] = lr
for i, (pic, target) in enumerate(train_dataloader):
if args.gpu_num>0:
pic = pic.cuda(gpu_ids[0])
target = target.cuda(gpu_ids[0])
output = model(pic.float(), pic.shape[0])
pred = torch.argmax(output, dim=1)
loss = criterion(output, target)
train_epoch_loss += loss
acc = pred.eq(target).sum().float().item()/args.batch_size
train_epoch_acc += acc
if i>0 and i%args.print_step==0:
print("Step {} loss : {:.2f} acc : {:.2f}".format(i, loss, acc))
opt.zero_grad()
loss.backward()
opt.step()
val_epoch_loss, val_epoch_acc = 0, 0
model.eval()
for i, (pic, target) in enumerate(val_dataloader):
if args.gpu_num>0:
pic = pic.cuda(gpu_ids[0])
target = target.cuda(gpu_ids[0])
output = model(pic.float(), 1)
pred = torch.argmax(output, dim=1)
loss = criterion(output, target)
val_epoch_loss += loss
acc = pred.eq(target).sum().float().item()
val_epoch_acc += acc
if current_best_acc<val_epoch_acc:
save_dict = {
"state_dict":model.state_dict(),
"optimizer":opt.state_dict()
}
torch.save(save_dict, os.path.join(args.checkpoint_path,
"model_epoch_{}.pth.tar".format(epoch)))
print("validate epoch {} loss : {:.2f} , acc : {:.2f}".
format(epoch, val_epoch_loss, val_epoch_acc/len(val_dataloader)))