-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmission.py
59 lines (46 loc) · 1.68 KB
/
submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import torch
import torch.nn as nn
from av2.datasets.motion_forecasting.eval.submission import ChallengeSubmission
from torch.utils.data import DataLoader
from tqdm import tqdm
from ArgoData.data_centerline import Argo2Dataset
from models.structure.banet import config, get_banet
from utils.helper import collate_fn
test_data = Argo2Dataset(root="../", split="test")
test_loader = DataLoader(
test_data,
batch_size=8,
num_workers=config["val_workers"],
shuffle=False,
collate_fn=collate_fn,
pin_memory=True,
)
config, collate_fn, net, loss, post_process, opt = get_banet()
checkpoint = torch.load("./models/results/ganet/36.000.ckpt")
net.load_state_dict(checkpoint["state_dict"], strict=False)
m = nn.Softmax(dim=0)
# import sys
if __name__ == "__main__":
final_predictions = dict()
for i, test_data in tqdm(enumerate(test_loader)):
# print(test_data.keys())
_, predictions = net(test_data)
for batch in range(len(predictions["reg"])):
probabilities = (
m(predictions["cls"][batch][0]).detach().cpu().numpy()
)
agt_prediction = (
predictions["reg"][batch][0].detach().cpu().numpy()
)
final_predictions[test_data["scenario_id"][batch]] = {
test_data["track_id"][batch]: tuple(
[agt_prediction, probabilities]
)
}
sub = ChallengeSubmission(final_predictions)
# print("size of the submission file: ", sys.getsizeof(sub))
save_path = "./tests/"
os.makedirs(save_path, exist_ok=True)
sub.to_parquet(os.path.join(save_path, "test.parquet"))
final_predictions = dict()