-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspawn_bert_adversarial.py
293 lines (244 loc) · 13 KB
/
spawn_bert_adversarial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# -*- coding:utf-8 -*-
import os
import math
import tempfile
import argparse
import json
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast, GradScaler
import torch.optim as optim
from tqdm import tqdm
import time
from sklearn.model_selection import StratifiedKFold
from transformers import BertTokenizer, AutoTokenizer
from transformers import BertForMultipleChoice, RobertaForMultipleChoice, RobertaModel
from transformers import get_cosine_schedule_with_warmup
from transformers import AdamW
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel
from pytorchtools import EMA
import utils
import distribute_utils
import torch.distributed.launch
import torch.multiprocessing as mp
import BertModelsCustom
from AdversarialUtils import FGM, PGD
# https://github.com/tczhangzhi/pytorch-distributed/blob/master/multiprocessing_distributed.py
# https://zhuanlan.zhihu.com/p/98535650
parser = argparse.ArgumentParser(description='Haihua RC')
# parser.add_argument('-m', '--model', default="/home/zuoyuhui/DataGame/haihuai_RC/chinese-bert-wwm-ext",
# help="model pretrain")
parser.add_argument('-m', '--model', default="/home/zuoyuhui/DataGame/haihuai_RC/chinese-bert-wwm-ext",
help="model pretrain")
parser.add_argument('--data', metavar='DIR', default="/home/zuoyuhui/DataGame/haihuai_RC/data/", help="path to dataset")
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=8, type=int, metavar='N', help="number of total epochs to run")
parser.add_argument('-b', '--batch_size', default=8, metavar='N')
parser.add_argument('--lr', '--learning-rate', default=2e-5, metavar='LR', help='initial learning rate')
parser.add_argument('--max_len', default=300, type=float, help="max text len in bert")
parser.add_argument('--fold_num', default=5, type=int, metavar='N', help="jiaocha yanzheng")
parser.add_argument('--seed', default=2029, type=int, metavar='N', help="random seed")
parser.add_argument('--accum_iter', default=2, type=int, metavar='N', help="gradient Accumulation")
parser.add_argument('--weight_decay', default=0.01, type=float)
tokenizer = BertTokenizer.from_pretrained(parser.parse_args().model)
def collate_fn(data): # 将文章问题选项拼在一起后,得到分词后的数字id,输出的size是(batch,n_choices,max_len
input_ids, attention_mask, token_type_ids = [], [], []
for x in data:
text = tokenizer(x[1],
text_pair=x[0],
padding='max_length', # 填充到使用参数max_length指定的最大长度,或者填充到模型的最大可接受输入长度(如果未提供该参数)。
truncation=True,
# TRUE或‘LIMEST_FIRST’:截断到使用参数max_length指定的最大长度,或者截断到模型的最大可接受输入长度(如果没有提供该参数)。这将逐个令牌截断令牌,如果提供了一对序列(或一批对),则从该对中最长的序列中删除一个令牌。
max_length=parser.parse_args().max_len,
return_tensors='pt') # 返回pytorch tensor格式
input_ids.append(text['input_ids'].tolist())
attention_mask.append(text['attention_mask'].tolist())
token_type_ids.append(text['token_type_ids'].tolist())
input_ids = torch.tensor(input_ids)
attention_mask = torch.tensor(attention_mask)
token_type_ids = torch.tensor(token_type_ids)
label = torch.tensor([x[-1] for x in data])
return input_ids, attention_mask, token_type_ids, label
def main():
args = parser.parse_args()
args.nprocs = torch.cuda.device_count() - 2
mp.spawn(main_worker, nprocs=args.nprocs, args=(args.nprocs, args))
def main_worker(local_rank, nprocs, args):
args.local_rank = local_rank
args.lr *= nprocs
print(args.lr)
utils.seed_everything(args.seed)
dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:23456', world_size=args.nprocs,
rank=local_rank)
torch.cuda.set_device(local_rank)
train_df = pd.read_csv(args.data + 'train_label_50.csv')
folds = StratifiedKFold(n_splits=args.fold_num, shuffle=True, random_state=2029).split(
np.arange(train_df.shape[0]), train_df.label.values)
cv = [] # 保存每折的最佳准确率
for fold, (train_idx, val_idx) in enumerate(folds):
train = train_df.loc[train_idx]
val = train_df.loc[val_idx]
train_set = utils.MyDataset(train)
val_set = utils.MyDataset(val)
model = BertModelsCustom.BertForMultipleChoice.from_pretrained(args.model).cuda(local_rank)
# ema = EMA(model, decay=0.9)
# ema.register()
# args.batch_size = int(args.batch_size / args.nprocs)
model = DistributedDataParallel(model, device_ids=[local_rank])
train_sampler = DistributedSampler(train_set)
val_sampler = DistributedSampler(val_set)
train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=args.batch_size, drop_last=True)
train_loader = DataLoader(train_set, batch_sampler=train_batch_sampler, pin_memory=False,
collate_fn=collate_fn, num_workers=2)
val_loader = DataLoader(val_set, batch_size=args.batch_size, sampler=val_sampler, pin_memory=False,
collate_fn=collate_fn, num_workers=2)
best_acc = 0
scaler = GradScaler()
optimizer = AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss().cuda(local_rank)
# criterion = utils.LabelSmoothingCrossEntropy().cuda(local_rank)
scheduler = get_cosine_schedule_with_warmup(optimizer, len(train_loader) // args.accum_iter,
args.epochs * len(train_loader) // args.accum_iter)
for epoch in range(args.epochs):
print('epochs:', epoch)
time.sleep(0.02)
train_sampler.set_epoch(epoch)
val_sampler.set_epoch(epoch)
train_one_epoch(train_loader, model, criterion, optimizer, scheduler, local_rank, scaler, args)
val_loss, val_acc = eval_one_epoch(val_loader, model, criterion, local_rank, args)
# acc = sum_num / val_sampler.total_size
if val_acc > best_acc:
best_acc = val_acc
print("best:", best_acc)
if distribute_utils.is_main_process():
torch.save(model.module.state_dict(),
'spawn_fgm_addtest77_{}_fold_{}.pt'.format(args.model.split('/')[-1], fold))
cv.append(best_acc)
if distribute_utils.is_main_process():
print("cv:", np.mean(cv))
def train_one_epoch(train_loader, model, criterion, optimizer, scheduler, local_rank, scaler, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
accs = utils.AverageMeter('Acc', ':6.2f')
model.train()
end = time.time()
optimizer.zero_grad()
if distribute_utils.is_main_process():
train_loader = tqdm(train_loader, total=len(train_loader), position=0, leave=True)
fgm = FGM(model)
pgd = PGD(model)
K = 3
y_truth, y_pred = [], []
mean_loss = torch.zeros(1).cuda(local_rank)
for step, (input_ids, attention_mask, token_type_ids, y) in enumerate(train_loader):
input_ids, attention_mask, token_type_ids, y = map(lambda x: x.cuda(local_rank, non_blocking=True),
(input_ids, attention_mask, token_type_ids, y))
data_time.update(time.time() - end)
with autocast():
output = model(input_ids, attention_mask, token_type_ids)[0]
loss = criterion(output, y) / args.accum_iter
scaler.scale(loss).backward()
# 对抗训练
fgm.attack()
output_adv = model(input_ids, attention_mask, token_type_ids)[0]
loss_adv = criterion(output_adv, y) / args.accum_iter
del input_ids, attention_mask, token_type_ids
loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
fgm.restore() # 恢复embedding参数
# pgd.backup_grad()
# # 对抗训练
# for t in range(K):
# pgd.attack(is_first_attack=(t == 0)) # 在embedding上添加对抗扰动, first attack时备份param.data
# if t != K - 1:
# model.zero_grad()
# else:
# pgd.restore_grad()
# output_adv = model(input_ids, attention_mask, token_type_ids)[0]
# loss_adv = criterion(output_adv, y) / args.accum_iter
# loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
# pgd.restore() # 恢复embedding参数
loss = distribute_utils.reduce_value(loss, average=True)
mean_loss = (mean_loss * step + loss.detach()) / (step + 1)
if ((step + 1) % args.accum_iter == 0) or ((step + 1) == len(train_loader)):
scaler.step(optimizer)
scaler.update()
# ema.update()
scheduler.step()
optimizer.zero_grad()
if distribute_utils.is_main_process():
acc = (output.argmax(1) == y).sum().item() / y.size(0)
accs.update(acc, y.size(0))
losses.update(mean_loss.item() * args.accum_iter, y.size(0))
train_loader.set_postfix(loss=losses.avg, acc=accs.avg)
return losses.avg, accs.avg
@torch.no_grad()
def eval_one_epoch(val_loader, model, criterion, local_rank, args):
losses = utils.AverageMeter('Loss', ':.4e')
accs = utils.AverageMeter('Acc', ':6.2f')
model.eval()
# ema.apply_shadow()
end = time.time()
y_truth, y_pred = [], []
if distribute_utils.is_main_process():
val_loader = tqdm(val_loader, total=len(val_loader), position=0, leave=True)
for idx, (input_ids, attention_mask, token_type_ids, y) in enumerate(val_loader):
input_ids, attention_mask, token_type_ids, y = input_ids.cuda(local_rank,
non_blocking=True), attention_mask.cuda(
local_rank, non_blocking=True), token_type_ids.cuda(local_rank, non_blocking=True), y.cuda(local_rank,
non_blocking=True).long()
output = model(input_ids, attention_mask, token_type_ids)[0]
y_truth.extend(y.cpu().numpy())
y_pred.extend(output.argmax(1).cpu().numpy())
loss = criterion(output, y)
dist.barrier()
acc = (output.argmax(1) == y).sum().item() / y.size(0)
reduced_loss = distribute_utils.reduce_mean(loss, args.nprocs)
if distribute_utils.is_main_process():
accs.update(acc, y.size(0))
losses.update(reduced_loss.item(), y.size(0))
val_loader.set_postfix(loss=losses.avg, acc=accs.avg)
# 等待所有进程计算完毕
if torch.device(local_rank) != torch.device("cpu"):
torch.cuda.synchronize(local_rank)
# ema.restore()
return losses.avg, accs.avg
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_info_param(model):
if distribute_utils.is_main_process():
# 定义总参数量、可训练参数量及非可训练参数量变量
Total_params = 0
Trainable_params = 0
NonTrainable_params = 0
# 遍历model.parameters()返回的全局参数列表
for param in model.parameters():
mulValue = np.prod(param.size()) # 使用numpy prod接口计算参数数组所有元素之积
Total_params += mulValue # 总参数量
if param.requires_grad:
Trainable_params += mulValue # 可训练参数量
else:
NonTrainable_params += mulValue # 非可训练参数量
print(f'Total params: {Total_params}')
print(f'Trainable params: {Trainable_params}')
print(f'Non-trainable params: {NonTrainable_params}')
if __name__ == '__main__':
main()