-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathserver.py
363 lines (333 loc) · 14.4 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import json
import signal
import time
import traceback
import requests
from ccg_nlpy import local_pipeline
from flask import Flask
from flask import request
from flask import send_from_directory
from flask_cors import CORS
from cache import ServerCache
from cache import SurfaceCache
from main import ZoeRunner
from zoe_utils import InferenceProcessor
from zoe_utils import Sentence
class CogCompLoggerClient:
def __init__(self, demo_name, base_url="http://127.0.0.1:5000"):
self.demo_name = demo_name
self.base_url = base_url
if self.base_url.endswith("/"):
self.url = self.base_url + "log"
else:
self.url = self.base_url + "/log"
def log(self, content=""):
params = {
'entry_name': self.demo_name,
'content': content
}
result = requests.post(url=self.url, params=params).json()
if result['result'] == 'SUCCESS':
return True
return False
def log_dict(self, d=None):
if d is None:
return self.log()
else:
return self.log(content=json.dumps(d))
class Server:
"""
Initialize the server with needed resources
@sql_db_path: The path pointing to the ELMo caches sqlite file
"""
def __init__(self, sql_db_path, surface_cache_path):
self.app = Flask(__name__)
CORS(self.app)
self.mem_cache = ServerCache()
self.surface_cache = SurfaceCache(surface_cache_path)
self.pipeline = local_pipeline.LocalPipeline()
self.pipeline_initialize_helper(['.'])
self.logger = CogCompLoggerClient("zoe", base_url="http://macniece.seas.upenn.edu:4005")
self.runner = ZoeRunner(allow_tensorflow=True)
status = self.runner.elmo_processor.load_sqlite_db(sql_db_path, server_mode=True)
if not status:
print("ELMo cache file is not found. Server mode is prohibited without it.")
print("Please contact the author for this cache, or modify this code if you know what you are doing.")
exit(1)
self.runner.elmo_processor.rank_candidates_vec()
signal.signal(signal.SIGINT, self.grace_end)
@staticmethod
def handle_root(path):
return send_from_directory('./frontend', path)
@staticmethod
def handle_redirection():
return Server.handle_root("index.html")
def parse_custom_rules(self, rules):
type_to_titles = {}
freebase_freq_total = {}
for rule in rules:
title = rule.split("|||")[0]
freebase_types = []
if title in self.runner.inference_processor.freebase_map:
freebase_types = self.runner.inference_processor.freebase_map[title].split(",")
for ft in freebase_types:
if ft in freebase_freq_total:
freebase_freq_total[ft] += 1
else:
freebase_freq_total[ft] = 1
custom_type = rule.split("|||")[1]
if custom_type in type_to_titles:
type_to_titles[custom_type].append(title)
else:
type_to_titles[custom_type] = [title]
counter = 0
ret = {}
for custom_type in type_to_titles:
freebase_freq = {}
for title in type_to_titles[custom_type]:
freebase_types = []
if title in self.runner.inference_processor.freebase_map:
freebase_types = self.runner.inference_processor.freebase_map[title].split(",")
counter += 1
for freebase_type in freebase_types:
if freebase_type in freebase_freq:
freebase_freq[freebase_type] += 1
else:
freebase_freq[freebase_type] = 1
for ft in freebase_freq:
if float(freebase_freq[ft]) > float(counter) * 0.5 and freebase_freq[ft] == freebase_freq_total[ft]:
ft = "/" + ft.replace(".", "/")
ret[ft] = custom_type
return ret
"""
Main request handler
It requires the request to contain required information like tokens/mentions
in the format of a json string
@param_override: override API input with a pre-defined dictionary
"""
def handle_input(self, param_override=None):
start_time = time.time()
ret = {}
r = request.get_json()
if param_override is not None:
r = param_override
if "tokens" not in r or "mention_starts" not in r or "mention_ends" not in r or "index" not in r:
ret["type"] = [["INVALID_INPUT"]]
ret["index"] = -1
ret["mentions"] = []
ret["candidates"] = [[]]
return json.dumps(ret)
sentences = []
for i in range(0, len(r["mention_starts"])):
sentence = Sentence(r["tokens"], int(r["mention_starts"][i]), int(r["mention_ends"][i]), "")
sentences.append(sentence)
mode = r["mode"]
predicted_types = []
predicted_candidates = []
other_possible_types = []
selected_candidates = []
mentions = []
if mode != "figer":
if mode != "custom":
selected_inference_processor = InferenceProcessor(mode, resource_loader=self.runner.inference_processor)
else:
rules = r["taxonomy"]
mappings = self.parse_custom_rules(rules)
selected_inference_processor = InferenceProcessor(mode, custom_mapping=mappings)
else:
selected_inference_processor = self.runner.inference_processor
for sentence in sentences:
sentence.set_signature(selected_inference_processor.signature())
cached = self.mem_cache.query_cache(sentence)
if cached is not None:
sentence = cached
else:
self.runner.process_sentence(sentence, selected_inference_processor)
try:
self.mem_cache.insert_cache(sentence)
self.surface_cache.insert_cache(sentence)
except:
print("Cache insertion exception. Ignored.")
predicted_types.append(list(sentence.predicted_types))
predicted_candidates.append(sentence.elmo_candidate_titles)
mentions.append(sentence.get_mention_surface_raw())
selected_candidates.append(sentence.selected_title)
other_possible_types.append(sentence.could_also_be_types)
elapsed_time = time.time() - start_time
print("Processed mention " + str([x.get_mention_surface() for x in sentences]) + " in mode " + mode + ". TIME: " + str(elapsed_time) + " seconds.")
# Post logging request to Cogcomp Logger
self.logger.log_dict(r)
ret["type"] = predicted_types
ret["candidates"] = predicted_candidates
ret["mentions"] = mentions
ret["index"] = r["index"]
ret["selected_candidates"] = selected_candidates
ret["other_possible_type"] = other_possible_types
return json.dumps(ret)
def pipeline_initialize_helper(self, tokens):
doc = self.pipeline.doc([tokens], pretokenized=True)
doc.get_shallow_parse
doc.get_ner_conll
doc.get_ner_ontonotes
doc.get_view("MENTION")
def handle_tokenizer_input(self):
r = request.get_json()
ret = {"tokens": []}
if "sentence" not in r:
return json.dumps(ret)
doc = self.pipeline.doc(r["sentence"])
token_view = doc.get_tokens
for cons in token_view:
ret["tokens"].append(str(cons))
return json.dumps(ret)
"""
Handles requests for mention filling
"""
def handle_mention_input(self):
r = request.get_json()
ret = {'mention_spans': []}
if "tokens" not in r:
return json.dumps(ret)
tokens = r["tokens"]
doc = self.pipeline.doc([tokens], pretokenized=True)
shallow_parse_view = doc.get_shallow_parse
ner_conll_view = doc.get_ner_conll
ner_ontonotes_view = doc.get_ner_ontonotes
md_view = doc.get_view("MENTION")
ret_set = set()
ret_list = []
additions_views = []
if ner_ontonotes_view.cons_list is not None:
additions_views.append(ner_ontonotes_view)
if md_view.cons_list is not None:
additions_views.append(md_view)
if shallow_parse_view.cons_list is not None:
additions_views.append(shallow_parse_view)
try:
if ner_conll_view.cons_list is not None:
for ner_conll in ner_conll_view:
for i in range(ner_conll['start'], ner_conll['end']):
ret_set.add(i)
ret_list.append((ner_conll['start'], ner_conll['end']))
for additions_view in additions_views:
for cons in additions_view:
add_to_list = True
if additions_view.view_name != "MENTION":
if additions_view.view_name == "SHALLOW_PARSE" and cons['label'] != "NP":
continue
start = int(cons['start'])
end = int(cons['end'])
else:
start = int(cons['properties']['EntityHeadStartSpan'])
end = int(cons['properties']['EntityHeadEndSpan'])
for i in range(max(start - 1, 0), min(len(tokens), end + 1)):
if i in ret_set:
add_to_list = False
break
if add_to_list:
for i in range(start, end):
ret_set.add(i)
ret_list.append((start, end))
except Exception as e:
traceback.print_exc()
print(e)
ret['mention_spans'] = ret_list
return json.dumps(ret)
"""
Handles surface form cached requests
This is expected to return sooner than actual processing
"""
def handle_simple_input(self):
ret = {}
r = request.get_json()
if "tokens" not in r or "mention_starts" not in r or "mention_ends" not in r or "index" not in r:
ret["type"] = [["INVALID_INPUT"]]
return json.dumps(ret)
sentences = []
for i in range(0, len(r["mention_starts"])):
sentence = Sentence(r["tokens"], int(r["mention_starts"][i]), int(r["mention_ends"][i]), "")
sentences.append(sentence)
types = []
for sentence in sentences:
surface = sentence.get_mention_surface()
cached_types = self.surface_cache.query_cache(surface)
if cached_types is not None:
distinct = set()
for t in cached_types:
distinct.add("/" + t.split("/")[1])
types.append(list(distinct))
else:
types.append([])
ret["type"] = types
ret["index"] = r["index"]
return json.dumps(ret)
def handle_word2vec_input(self):
ret = {}
r = request.get_json()
if "tokens" not in r or "mention_starts" not in r or "mention_ends" not in r or "index" not in r:
ret["type"] = [["INVALID_INPUT"]]
return json.dumps(ret)
sentences = []
for i in range(0, len(r["mention_starts"])):
sentence = Sentence(r["tokens"], int(r["mention_starts"][i]), int(r["mention_ends"][i]), "")
sentences.append(sentence)
predicted_types = []
for sentence in sentences:
self.runner.process_sentence_vec(sentence)
predicted_types.append(list(sentence.predicted_types))
ret["type"] = predicted_types
ret["index"] = r["index"]
return json.dumps(ret)
def handle_elmo_input(self):
ret = {}
results = []
r = request.get_json()
if "sentence" not in r:
ret["vectors"] = []
return json.dumps(ret)
elmo_map = self.runner.elmo_processor.process_single_continuous(r["sentence"])
for token in r["sentence"].split():
results.append((token, str(elmo_map[token])))
ret["vectors"] = results
return json.dumps(ret)
def handle_logger_test(self):
params = {
"tokens": ["Iced", "Earth", "\\u2019", "s", "musical", "style", "is", "influenced", "by", "many", "traditional", "heavy", "metal", "groups", "such", "as", "Black", "Sabbath", "."],
"index": 0,
"mention_starts": [0],
"mention_ends": [2],
"mode": "figer",
"taxonomy": [],
}
self.handle_input(param_override=params)
return "finished"
"""
Handler to start the Flask app
@localhost: Whether the server lives only in localhost
@port: A port number, default to 80 (Web)
"""
def start(self, localhost=False, port=80):
self.app.add_url_rule("/", "", self.handle_redirection)
self.app.add_url_rule("/<path:path>", "<path:path>", self.handle_root)
self.app.add_url_rule("/annotate", "annotate", self.handle_input, methods=['POST'])
self.app.add_url_rule("/annotate_token", "annotate_token", self.handle_tokenizer_input, methods=['POST'])
self.app.add_url_rule("/annotate_mention", "annotate_mention", self.handle_mention_input, methods=['POST'])
self.app.add_url_rule("/annotate_cache", "annotate_cache", self.handle_simple_input, methods=['POST'])
self.app.add_url_rule("/annotate_vec", "annotate_vec", self.handle_word2vec_input, methods=['POST'])
self.app.add_url_rule("/annotate_elmo", "annotate_elmo", self.handle_elmo_input, methods=['POST'])
# Specifically saved for logger test
self.app.add_url_rule("/test", "test", self.handle_logger_test, methods=['POST', 'GET'])
if localhost:
self.app.run()
else:
self.app.run(host='0.0.0.0', port=port)
def grace_end(self, signum, frame):
print("Gracefully Existing...")
if self.runner.elmo_processor.db_loaded:
self.runner.elmo_processor.db_conn.close()
print("Resource Released. Existing.")
exit(0)
if __name__ == '__main__':
# First argument is a placeholder. Please ask for the actual file.
server = Server("elmo_cache_correct.db", "./data/surface_cache_new.db")
server.start(localhost=True)