-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtin_r50_1x1x8_40e_sthv1_rgb.py
131 lines (131 loc) · 3.89 KB
/
tin_r50_1x1x8_40e_sthv1_rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# model settings
model = dict(
type='Recognizer2D',
backbone=dict(
type='ResNetTIN',
pretrained='torchvision://resnet50',
depth=50,
norm_eval=False,
shift_div=4),
cls_head=dict(
type='TSMHead',
num_classes=174,
in_channels=2048,
spatial_type='avg',
consensus=dict(type='AvgConsensus', dim=1),
dropout_ratio=0.8,
init_std=0.001,
is_shift=False))
# model training and testing settings
train_cfg = None
test_cfg = dict(average_clips=None)
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'data/sth-v1/rawframes_train/'
data_root_val = 'data/sth-v1/rawframes_val/'
ann_file_train = 'data/sth-v1/sth-v1_train_list.txt'
ann_file_val = 'data/sth-v1/sth-v1_val_list.txt'
ann_file_test = 'data/sth-v1/sth-v1_val_list.txt'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),
dict(type='FrameSelector'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=8,
test_mode=True),
dict(type='FrameSelector'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=8,
test_mode=True),
dict(type='FrameSelector'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
data = dict(
videos_per_gpu=6,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
filename_tmpl='{:05}.jpg',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
filename_tmpl='{:05}.jpg',
pipeline=val_pipeline),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=data_root_val,
filename_tmpl='{:05}.jpg',
pipeline=test_pipeline))
# optimizer
optimizer = dict(
type='SGD',
constructor='TSMOptimizerConstructor',
paramwise_cfg=dict(fc_lr5=True),
lr=0.02, # this lr is used for 8 gpus
momentum=0.9,
weight_decay=0.0005)
optimizer_config = dict(grad_clip=dict(max_norm=20, norm_type=2))
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr_ratio=0.5,
warmup='linear',
warmup_ratio=0.1,
warmup_by_epoch=True,
warmup_iters=1)
total_epochs = 40
checkpoint_config = dict(interval=1)
evaluation = dict(
interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'])
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook'),
])
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/tin_r50_1x1x8_40e_sthv1_rgb/'
load_from = None
resume_from = None
workflow = [('train', 1)]