-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
131 lines (117 loc) · 5.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import os
import toml
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from dataset.lavdf import LavdfDataModule
from model import Batfd, BatfdPlus
from utils import LrLogger, EarlyStoppingLR, generate_metadata_min
parser = argparse.ArgumentParser(description="BATFD training")
parser.add_argument("--config", type=str)
parser.add_argument("--data_root", type=str)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--gpus", type=int, default=1)
parser.add_argument("--precision", default=32)
parser.add_argument("--num_train", type=int, default=None)
parser.add_argument("--num_val", type=int, default=1000)
parser.add_argument("--max_epochs", type=int, default=500)
parser.add_argument("--resume", type=str, default=None)
if __name__ == '__main__':
args = parser.parse_args()
config = toml.load(args.config)
if not os.path.exists(os.path.join(args.data_root, "metadata.min.json")):
generate_metadata_min(args.data_root)
learning_rate = config["optimizer"]["learning_rate"]
gpus = args.gpus
total_batch_size = args.batch_size * gpus
learning_rate = learning_rate * total_batch_size / 4
dataset = config["dataset"]
v_encoder_type = config["model"]["video_encoder"]["type"]
a_encoder_type = config["model"]["audio_encoder"]["type"]
v_feature = None
a_feature = None
if config["model_type"] == "batfd_plus":
model = BatfdPlus(
v_encoder=v_encoder_type,
a_encoder=config["model"]["audio_encoder"]["type"],
frame_classifier=config["model"]["frame_classifier"]["type"],
ve_features=config["model"]["video_encoder"]["hidden_dims"],
ae_features=config["model"]["audio_encoder"]["hidden_dims"],
v_cla_feature_in=config["model"]["video_encoder"]["cla_feature_in"],
a_cla_feature_in=config["model"]["audio_encoder"]["cla_feature_in"],
boundary_features=config["model"]["boundary_module"]["hidden_dims"],
boundary_samples=config["model"]["boundary_module"]["samples"],
temporal_dim=config["num_frames"],
max_duration=config["max_duration"],
weight_frame_loss=config["optimizer"]["frame_loss_weight"],
weight_modal_bm_loss=config["optimizer"]["modal_bm_loss_weight"],
weight_contrastive_loss=config["optimizer"]["contrastive_loss_weight"],
contrast_loss_margin=config["optimizer"]["contrastive_loss_margin"],
cbg_feature_weight=config["optimizer"]["cbg_feature_weight"],
prb_weight_forward=config["optimizer"]["prb_weight_forward"],
weight_decay=config["optimizer"]["weight_decay"],
learning_rate=learning_rate,
distributed=args.gpus > 1
)
require_match_scores = True
get_meta_attr = BatfdPlus.get_meta_attr
elif config["model_type"] == "batfd":
model = Batfd(
v_encoder=config["model"]["video_encoder"]["type"],
a_encoder=config["model"]["audio_encoder"]["type"],
frame_classifier=config["model"]["frame_classifier"]["type"],
ve_features=config["model"]["video_encoder"]["hidden_dims"],
ae_features=config["model"]["audio_encoder"]["hidden_dims"],
v_cla_feature_in=config["model"]["video_encoder"]["cla_feature_in"],
a_cla_feature_in=config["model"]["audio_encoder"]["cla_feature_in"],
boundary_features=config["model"]["boundary_module"]["hidden_dims"],
boundary_samples=config["model"]["boundary_module"]["samples"],
temporal_dim=config["num_frames"],
max_duration=config["max_duration"],
weight_frame_loss=config["optimizer"]["frame_loss_weight"],
weight_modal_bm_loss=config["optimizer"]["modal_bm_loss_weight"],
weight_contrastive_loss=config["optimizer"]["contrastive_loss_weight"],
contrast_loss_margin=config["optimizer"]["contrastive_loss_margin"],
weight_decay=config["optimizer"]["weight_decay"],
learning_rate=learning_rate,
distributed=args.gpus > 1
)
require_match_scores = False
get_meta_attr = Batfd.get_meta_attr
else:
raise ValueError("Invalid model type")
if dataset == "lavdf":
dm = LavdfDataModule(
root=args.data_root,
frame_padding=config["num_frames"],
require_match_scores=require_match_scores,
feature_types=(v_feature, a_feature),
max_duration=config["max_duration"],
batch_size=args.batch_size, num_workers=args.num_workers,
take_train=args.num_train, take_dev=args.num_val,
get_meta_attr=get_meta_attr
)
else:
raise ValueError("Invalid dataset type")
try:
precision = int(args.precision)
except ValueError:
precision = args.precision
monitor = "val_fusion_bm_loss"
trainer = Trainer(log_every_n_steps=50, precision=precision, max_epochs=args.max_epochs,
callbacks=[
ModelCheckpoint(
dirpath=f"./ckpt/{config['name']}", save_last=True, filename=config["name"] + "-{epoch}-{val_loss:.3f}",
monitor=monitor, mode="min"
),
LrLogger(),
EarlyStoppingLR(lr_threshold=1e-7)
], enable_checkpointing=True,
benchmark=True,
accelerator="auto",
devices=args.gpus,
strategy=None if args.gpus < 2 else "ddp",
resume_from_checkpoint=args.resume,
)
trainer.fit(model, dm)