-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathRouletteAi.py
82 lines (62 loc) · 3.01 KB
/
RouletteAi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras import layers
from art import text2art
# Generate ASCII art with the text "RouletteAi"
ascii_art = text2art("RouletteAi")
print("============================================================")
print("RouletteAi")
print("Created by: Corvus Codex")
print("Github: https://github.com/CorvusCodex/")
print("Licence : MIT License")
print("Support my work: ")
print("BTC: bc1q7wth254atug2p4v9j3krk9kauc0ehys2u8tgg3")
print("ETH / BNB /POLYGON: 0x68B6D33Ad1A3e0aFaDA60d6ADf8594601BE492F0")
print("SOL: FsX3CsTFkRjzne2KiD8gjw3PEW2bYqezKfydAP55BVj7")
print("Donate/Support/Buy me a coffee: https://www.buymeacoffee.com/CorvusCodex")
print("============================================================")
# Print the generated ASCII art
print(ascii_art)
print("Roulette prediction artificial intelligence")
# Load data from file, ignoring white spaces and accepting unlimited length numbers
data = np.genfromtxt('data.txt', delimiter='\n', dtype=int)
# Filter out numbers that are not between 0 and 36 (inclusive)
data = data[(data >= 0) & (data <= 36)]
# Define the length of the input sequences
sequence_length = 10
# Create sequences of fixed length from the data
sequences = np.array([data[i:i+sequence_length] for i in range(len(data)-sequence_length)])
# Create target values which are the next number after each sequence
targets = data[sequence_length:]
# Split the data into training and validation sets
train_data = sequences[:int(0.8*len(sequences))]
train_targets = targets[:int(0.8*len(targets))]
val_data = sequences[int(0.8*len(sequences)):]
val_targets = targets[int(0.8*len(targets)):]
# Get the maximum value in the data
max_value = np.max(data)
# Set the number of features to 1
num_features = 1
model = keras.Sequential()
model.add(layers.Embedding(input_dim=max_value+1, output_dim=51200))
model.add(layers.LSTM(104800))
model.add(layers.Dense(num_features, activation='softmax')) # Set the number of units to match the number of features
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(train_data, train_targets, validation_data=(val_data, val_targets), epochs=100)
predictions = model.predict(val_data)
indices = np.argsort(predictions, axis=1)[:, -num_features:]
predicted_numbers = np.take_along_axis(val_data, indices, axis=1)
print("============================================================")
print("Predicted Number:")
for numbers in predicted_numbers[:1]:
print(', '.join(map(str, numbers)))
print("============================================================")
print("If you won buy me a coffee: https://www.buymeacoffee.com/CorvusCodex")
print("Support my work:")
print("BTC: bc1q7wth254atug2p4v9j3krk9kauc0ehys2u8tgg3")
print("ETH & BNB: 0x68B6D33Ad1A3e0aFaDA60d6ADf8594601BE492F0")
print("Buy me a coffee: https://www.buymeacoffee.com/CorvusCodex")
print("============================================================")
# Prevent the window from closing immediately
input('Press ENTER to exit')