-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_transforms.py
809 lines (700 loc) · 33.4 KB
/
video_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
"""
This file is obtained and modified from:
- https://github.com/piergiaj/pytorch-i3d
- https://github.com/jbohnslav/opencv_transforms
- https://github.com/YU-Zhiyang/opencv_transforms_torchvision
- https://pytorch.org/docs/stable/_modules/torchvision/transforms/transforms.html
"""
import os
thread = "1"
os.environ["MKL_NUM_THREADS"] = thread
os.environ["NUMEXPR_NUM_THREADS"] = thread
os.environ["OMP_NUM_THREADS"] = thread
os.environ["VECLIB_MAXIMUM_THREADS"] = thread
os.environ["OPENBLAS_NUM_THREADS"] = thread
import cv2
cv2.setNumThreads(0)
import numpy as np
import numbers
import random
import warnings
import types
import bin.opencv_functional as F
import torchvision.transforms.functional as FF
from torchvision.transforms import Compose
import math
import torch
class RandomCrop(object):
"""Crop the given video sequences (t x h x w) at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
@staticmethod
def get_params(img, output_size):
"""Get parameters for ``crop`` for a random crop.
Args:
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
t, h, w, c = img.shape
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th) if h!=th else 0
j = random.randint(0, w - tw) if w!=tw else 0
return i, j, th, tw
def __call__(self, imgs):
i, j, h, w = self.get_params(imgs, self.size)
imgs = imgs[:, i:i+h, j:j+w, :]
return imgs
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class CenterCrop(object):
"""Crops the given seq Images at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, imgs):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
t, h, w, c = imgs.shape
th, tw = self.size
i = int(np.round((h - th) / 2.))
j = int(np.round((w - tw) / 2.))
return imgs[:, i:i+th, j:j+tw, :]
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class RandomHorizontalFlip(object):
"""Horizontally flip the given seq Images randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, imgs):
"""
Args:
img (seq Images): seq Images to be flipped.
Returns:
seq Images: Randomly flipped seq images.
"""
if random.random() < self.p:
# t x h x w
return np.flip(imgs, axis=2).copy()
return imgs
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class Lambda(object):
"""Apply a user-defined lambda as a transform.
Args:
lambd (function): Lambda/function to be used for transform.
"""
def __init__(self, lambd):
assert isinstance(lambd, types.LambdaType)
self.lambd = lambd
def __call__(self, img):
return self.lambd(img)
def __repr__(self):
return self.__class__.__name__ + '()'
class ColorJitter(object):
"""Randomly change the brightness, contrast and saturation of a sequence of images.
Args:
brightness (float or tuple of float (min, max)): How much to jitter brightness.
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
contrast (float or tuple of float (min, max)): How much to jitter contrast.
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
saturation (float or tuple of float (min, max)): How much to jitter saturation.
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
hue (float or tuple of float (min, max)): How much to jitter hue.
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
gamma (float or tuple of float (min, max)): How much to jitter gamma.
gamma_factor is chosen uniformly from [max(0, 1 - gamma), 1 + gamma]
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, gamma=0):
self.brightness = self._check_input(brightness, 'brightness')
self.contrast = self._check_input(contrast, 'contrast')
self.saturation = self._check_input(saturation, 'saturation')
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
clip_first_on_zero=False)
self.gamma = self._check_input(gamma, 'gamma')
if self.saturation is not None:
warnings.warn('Saturation jitter enabled. Will slow down loading immensely.')
if self.hue is not None:
warnings.warn('Hue jitter enabled. Will slow down loading immensely.')
def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError("If {} is a single number, it must be non negative.".format(name))
value = [center - value, center + value]
if clip_first_on_zero:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError("{} values should be between {}".format(name, bound))
else:
raise TypeError("{} should be a single number or a list/tuple with length 2.".format(name))
# if value is 0 or (1., 1.) for brightness/contrast/saturation/gamma
# or (0., 0.) for hue, do nothing
if value[0] == value[1] == center:
value = None
return value
@staticmethod
def get_params(brightness, contrast, saturation, hue, gamma):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness is not None:
brightness_factor = random.uniform(brightness[0], brightness[1])
transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))
if contrast is not None:
contrast_factor = random.uniform(contrast[0], contrast[1])
transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))
if saturation is not None:
saturation_factor = random.uniform(saturation[0], saturation[1])
transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))
if hue is not None:
hue_factor = random.uniform(hue[0], hue[1])
transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))
if gamma is not None:
gamma_factor = random.uniform(gamma[0], gamma[1])
transforms.append(Lambda(lambda img: F.adjust_gamma(img, gamma_factor)))
random.shuffle(transforms)
transform = Compose(transforms)
return transform
def __call__(self, imgs):
"""
Args:
imgs (numpy ndarray): Input image sequence (time*height*width*channel).
Returns:
numpy ndarray: Color jittered image sequence.
"""
transform = self.get_params(self.brightness, self.contrast,
self.saturation, self.hue, self.gamma)
# Apply to all images
output_imgs = []
for I in imgs:
output_imgs.append(transform(I))
return np.array(output_imgs)
def __repr__(self):
format_string = self.__class__.__name__ + '('
format_string += 'brightness={0}'.format(self.brightness)
format_string += ', contrast={0}'.format(self.contrast)
format_string += ', saturation={0}'.format(self.saturation)
format_string += ', hue={0})'.format(self.hue)
format_string += ', gamma={0})'.format(self.gamma)
return format_string
class RandomResizedCrop(object):
"""Crop the given numpy ndarray image sequence to random size and aspect ratio.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: cv2.INTER_CUBIC
"""
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=cv2.INTER_CUBIC):
self.size = (size, size)
self.interpolation = interpolation
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (numpy ndarray): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
for attempt in range(10):
area = img.shape[0] * img.shape[1]
target_area = random.uniform(*scale) * area
aspect_ratio = random.uniform(*ratio)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.shape[1] and h <= img.shape[0]:
i = random.randint(0, img.shape[0] - h)
j = random.randint(0, img.shape[1] - w)
return i, j, h, w
# Fallback
w = min(img.shape[0], img.shape[1])
i = (img.shape[0] - w) // 2
j = (img.shape[1] - w) // 2
return i, j, w, w
def __call__(self, imgs):
"""
Args:
imgs (numpy ndarray): Image sequence (time*height*width*channel) to be cropped and resized.
Returns:
numpy ndarray: Randomly cropped and resized image sequence.
"""
i, j, h, w = self.get_params(imgs[0, ...], self.scale, self.ratio)
# Apply to all images
output_imgs = []
for I in imgs:
output_imgs.append(F.resized_crop(I, i, j, h, w, self.size, self.interpolation))
return np.array(output_imgs)
def __repr__(self):
interpolate_str = _pil_interpolation_to_str[self.interpolation]
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
format_string += ', interpolation={0})'.format(interpolate_str)
return format_string
class RandomRotation(object):
"""Rotate the image sequence by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees).
resample ({cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4}, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
def __init__(self, degrees, resample=False, expand=False, center=None):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
if len(degrees) != 2:
raise ValueError("If degrees is a sequence, it must be of len 2.")
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
@staticmethod
def get_params(degrees):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
sequence: params to be passed to ``rotate`` for random rotation.
"""
angle = random.uniform(degrees[0], degrees[1])
return angle
def __call__(self, imgs):
"""
imgs (numpy ndarray): Image sequence (time*height*width*channel) to be rotated.
Returns:
numpy ndarray: Rotated image sequence.
"""
angle = self.get_params(self.degrees)
# Apply to all images
output_imgs = []
for I in imgs:
output_imgs.append(F.rotate(I, angle, self.resample, self.expand, self.center))
return np.array(output_imgs)
def __repr__(self):
format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
format_string += ', resample={0}'.format(self.resample)
format_string += ', expand={0}'.format(self.expand)
if self.center is not None:
format_string += ', center={0}'.format(self.center)
format_string += ')'
return format_string
class RandomAffine(object):
"""Random affine transformation of the image sequence keeping center invariant
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to deactivate rotations.
translate (tuple, optional): tuple of maximum absolute fraction for horizontal
and vertical translations. For example translate=(a, b), then horizontal shift
is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
randomly sampled from the range a <= scale <= b. Will keep original scale by default.
shear (sequence or float or int, optional): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Will not apply shear by default
resample ({cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4}, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
fillcolor (int): Optional fill color for the area outside the transform in the output image.
"""
def __init__(self, degrees, translate=None, scale=None, shear=None, interpolation=cv2.INTER_CUBIC, fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError("If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
"shear should be a list or tuple and it must be of length 2."
self.shear = shear
else:
self.shear = shear
# self.resample = resample
self.interpolation = interpolation
self.fillcolor = fillcolor
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, img_size):
"""Get parameters for affine transformation
Returns:
sequence: params to be passed to the affine transformation
"""
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = random.uniform(scale_ranges[0], scale_ranges[1])
else:
scale = 1.0
if shears is not None:
shear = random.uniform(shears[0], shears[1])
else:
shear = 0.0
return angle, translations, scale, shear
def __call__(self, imgs):
"""
imgs (numpy ndarray): Image sequence (time*height*width*channel) to be transformed.
Returns:
numpy ndarray: Affine transformed image sequence.
"""
ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, (imgs.shape[2], imgs.shape[1]))
# Apply to all images
output_imgs = []
for I in imgs:
output_imgs.append(F.affine(I, *ret, interpolation=self.interpolation, fillcolor=self.fillcolor))
return np.array(output_imgs)
def __repr__(self):
s = '{name}(degrees={degrees}'
if self.translate is not None:
s += ', translate={translate}'
if self.scale is not None:
s += ', scale={scale}'
if self.shear is not None:
s += ', shear={shear}'
if self.resample > 0:
s += ', resample={resample}'
if self.fillcolor != 0:
s += ', fillcolor={fillcolor}'
s += ')'
d = dict(self.__dict__)
d['resample'] = _pil_interpolation_to_str[d['resample']]
return s.format(name=self.__class__.__name__, **d)
class RandomPerspective(object):
"""Random perspective transformation of the image sequence keeping center invariant
Args:
fov(float): range of wide angle = 90+-fov
anglex (sequence or float or int): Range of degrees rote around X axis to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to desactivate rotations.
angley (sequence or float or int): Range of degrees rote around Y axis to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to desactivate rotations.
anglez (sequence or float or int): Range of degrees rote around Z axis to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to desactivate rotations.
shear (sequence or float or int): Range of degrees for shear rote around axis to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to desactivate rotations.
translate (tuple, optional): tuple of maximum absolute fraction for horizontal
and vertical translations. For example translate=(a, b), then horizontal shift
is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
randomly sampled from the range a <= scale <= b. Will keep original scale by default.
resample ({nearest, bilinear, bicubic}, optional): An optional resampling filter.
fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
"""
def __init__(self, fov=0, anglex=0, angley=0, anglez=0, shear=0,
translate=(0, 0), scale=(1, 1), resample='bilinear', fillcolor=(0, 0, 0)):
assert all([isinstance(anglex, (tuple, list)) or anglex >= 0,
isinstance(angley, (tuple, list)) or angley >= 0,
isinstance(anglez, (tuple, list)) or anglez >= 0,
isinstance(shear, (tuple, list)) or shear >= 0]), \
'All angles must be positive or tuple or list'
assert 80 >= fov >= 0, 'fov should be in (0, 80)'
self.fov = fov
self.anglex = (-anglex, anglex) if isinstance(anglex, numbers.Number) else anglex
self.angley = (-angley, angley) if isinstance(angley, numbers.Number) else angley
self.anglez = (-anglez, anglez) if isinstance(anglez, numbers.Number) else anglez
self.shear = (-shear, shear) if isinstance(shear, numbers.Number) else shear
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
assert all([0.0 <= i <= 1.0 for i in translate]), "translation values should be between 0 and 1"
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
assert all([s > 0 for s in scale]), "scale values should be positive"
self.scale = scale
self.resample = resample
self.fillcolor = fillcolor
@staticmethod
def get_params(fov_range, anglex_ranges, angley_ranges, anglez_ranges, shear_ranges,
translate, scale_ranges, img_size):
"""Get parameters for perspective transformation
Returns:
sequence: params to be passed to the perspective transformation
"""
fov = 90 + random.uniform(-fov_range, fov_range)
anglex = random.uniform(anglex_ranges[0], anglex_ranges[1])
angley = random.uniform(angley_ranges[0], angley_ranges[1])
anglez = random.uniform(anglez_ranges[0], anglez_ranges[1])
shear = random.uniform(shear_ranges[0], shear_ranges[1])
max_dx = translate[0] * img_size[1]
max_dy = translate[1] * img_size[0]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
scale = (random.uniform(1 / scale_ranges[0], scale_ranges[0]),
random.uniform(1 / scale_ranges[1], scale_ranges[1]))
return fov, anglex, angley, anglez, shear, translations, scale
def __call__(self, imgs):
"""
imgs (np.ndarray): Image sequence (time*height*width*channel) to be transformed.
Returns:
np.ndarray: Perspective transformed image sequence.
"""
ret = self.get_params(self.fov, self.anglex, self.angley, self.anglez, self.shear,
self.translate, self.scale, imgs[0, ...].shape)
# Apply to all images
output_imgs = []
for I in imgs:
output_imgs.append(F.perspective(I, *ret, resample=self.resample, fillcolor=self.fillcolor))
return np.array(output_imgs)
def __repr__(self):
s = '{name}(degrees={degrees}'
if self.translate is not None:
s += ', translate={translate}'
if self.scale is not None:
s += ', scale={scale}'
if self.shear is not None:
s += ', shear={shear}'
if self.resample > 0:
s += ', resample={resample}'
if self.fillcolor != 0:
s += ', fillcolor={fillcolor}'
s += ')'
d = dict(self.__dict__)
d['resample'] = d['resample']
return s.format(name=self.__class__.__name__, **d)
class RandomErasing(object):
""" Randomly selects a rectangle region in an image and erases its pixels.
'Random Erasing Data Augmentation' by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
p: probability that the random erasing operation will be performed.
scale: range of proportion of erased area against input image.
ratio: range of aspect ratio of erased area.
value: erasing value. Default is 0. If a single int, it is used to
erase all pixels. If a tuple of length 3, it is used to erase
R, G, B channels respectively.
If a str of 'random', erasing each pixel with random values.
inplace: boolean to make this transform inplace. Default set to False.
Returns:
Erased Image.
# Examples:
>>> transform = transforms.Compose([
>>> transforms.RandomHorizontalFlip(),
>>> transforms.ToTensor(),
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
>>> transforms.RandomErasing(),
>>> ])
"""
def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
assert isinstance(value, (numbers.Number, str, tuple, list))
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
warnings.warn("range should be of kind (min, max)")
if scale[0] < 0 or scale[1] > 1:
raise ValueError("range of scale should be between 0 and 1")
if p < 0 or p > 1:
raise ValueError("range of random erasing probability should be between 0 and 1")
self.p = p
self.scale = scale
self.ratio = ratio
self.value = value
self.inplace = inplace
@staticmethod
def get_params(img, scale, ratio, value=0):
"""Get parameters for ``erase`` for a random erasing.
Args:
img (Tensor): Tensor image of size (C, H, W) to be erased.
scale: range of proportion of erased area against input image.
ratio: range of aspect ratio of erased area.
Returns:
tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
"""
img_c, img_h, img_w = img.shape
area = img_h * img_w
for attempt in range(10):
erase_area = random.uniform(scale[0], scale[1]) * area
aspect_ratio = random.uniform(ratio[0], ratio[1])
h = int(round(math.sqrt(erase_area * aspect_ratio)))
w = int(round(math.sqrt(erase_area / aspect_ratio)))
if h < img_h and w < img_w:
i = random.randint(0, img_h - h)
j = random.randint(0, img_w - w)
if isinstance(value, numbers.Number):
v = value
elif isinstance(value, torch._six.string_classes):
v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
elif isinstance(value, (list, tuple)):
v = torch.tensor(value, dtype=torch.float32).view(-1, 1, 1).expand(-1, h, w)
return i, j, h, w, v
# Return original image
return 0, 0, img_h, img_w, img
def __call__(self, imgs):
"""
Args:
imgs (Tensor): Tensor image sequence of size (channel*time*height*width) to be erased.
Returns:
Tensor: Erased Tensor image sequence.
"""
if random.uniform(0, 1) < self.p:
x, y, h, w, v = self.get_params(imgs[:, 0, :, :], scale=self.scale, ratio=self.ratio, value=self.value)
# Apply to all images
output_imgs = []
for I in imgs.transpose(0, 1):
output_imgs.append(FF.erase(I, x, y, h, w, v, self.inplace).unsqueeze(1))
return torch.cat(output_imgs, dim=1)
return imgs
class Resize(object):
"""Resize the input numpy ndarray to the given size.
Args:
size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``cv2.INTER_CUBIC``, bicubic interpolation
"""
def __init__(self, size, interpolation=cv2.INTER_CUBIC):
assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)
self.size = size
self.interpolation = interpolation
def __call__(self, imgs):
"""
Args:
imgs (numpy ndarray): Image sequence (time*height*width*channel) to be scaled.
Returns:
numpy ndarray: Rescaled image sequence.
"""
# Apply to all images
output_imgs = []
for I in imgs:
output_imgs.append(F.resize(I, self.size, self.interpolation))
return np.array(output_imgs)
def __repr__(self):
interpolate_str = _cv2_interpolation_from_str[self.interpolation]
return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
class Normalize(object):
"""Normalize a tensor image sequence with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``input[channel] = (input[channel] - mean[channel]) / std[channel]``
.. note::
This transform acts out of place, i.e., it does not mutates the input tensor.
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, imgs):
"""
Args:
imgs (Tensor): Tensor image sequence of size (channel*time*height*width) to be normalized.
Returns:
Tensor: Normalized Tensor image sequence.
"""
# Apply to all images
output_imgs = []
for I in imgs.transpose(0, 1):
output_imgs.append(F.normalize(I, self.mean, self.std).unsqueeze(1))
return torch.cat(output_imgs, dim=1)
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
class ToTensor(object):
"""Convert a ``numpy.ndarray`` sequence to tensor.
Converts a numpy.ndarray (time*height*width*channel) to
a torch.FloatTensor of shape (channel*time*height*width)
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
or if the numpy.ndarray has dtype = np.uint8
In the other cases, tensors are returned without scaling.
"""
def __call__(self, imgs):
"""
Args:
imgs (numpy.ndarray): Image sequence to be converted to tensor.
Returns:
Tensor: Converted image sequence.
"""
# Apply to all images
output_imgs = []
for I in imgs:
output_imgs.append(F.to_tensor(I).unsqueeze(1))
return torch.cat(output_imgs, dim=1)
def __repr__(self):
return self.__class__.__name__ + '()'