-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
37 lines (30 loc) · 1.48 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import ElectraModel, ElectraTokenizer
class Prediction():
def __init__(self):
super().__init__()
self.model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-discriminator") # KoELECTRA-Base-v3
self.tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
def get_embedding(self, text):
# 텍스트를 토큰화하고 토큰의 ID로 변환
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
# 모델에 입력하여 hidden state 출력 (문맥적 임베딩)
with torch.no_grad():
outputs = self.model(**inputs)
# 마지막 hidden state의 첫번째 토큰 (CLS 토큰)을 문서의 임베딩으로 사용
embeddings = outputs.last_hidden_state[:, 0, :].numpy()
return embeddings
def get_cosine_similarity(self, embeddings):
similarities = []
prompt = embeddings[0]
for i in range(1, len(embeddings)):
similarities.append(cosine_similarity(prompt, embeddings[i])[0][0])
return similarities
def get_corrcoef_similarity(self, embeddings):
similarities = []
prompt = embeddings[0]
for i in range(1, len(embeddings)):
similarities.append(np.corrcoef(prompt, embeddings[i])[0][1])
return similarities