-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor+movement+sharp.c
806 lines (648 loc) · 19.7 KB
/
color+movement+sharp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/************************************************************************************
LCD Connections:
LCD Microcontroller Pins
RS --> PC0
RW --> PC1
EN --> PC2
DB7 --> PC7
DB6 --> PC6
DB5 --> PC5
DB4 --> PC4
ADC Connection:
ACD CH. PORT Sensor
0 PF0 Battery Voltage
1 PF1 White line sensor 3
2 PF2 White line sensor 2
3 PF3 White line sensor 1
4 PF4 IR Proximity analog sensor 1*****
5 PF5 IR Proximity analog sensor 2*****
6 PF6 IR Proximity analog sensor 3*****
7 PF7 IR Proximity analog sensor 4*****
8 PK0 IR Proximity analog sensor 5
9 PK1 Sharp IR range sensor 1
10 PK2 Sharp IR range sensor 2
11 PK3 Sharp IR range sensor 3
12 PK4 Sharp IR range sensor 4
13 PK5 Sharp IR range sensor 5
14 PK6 Servo Pod 1
15 PK7 Servo Pod 2
***** For using Analog IR proximity (1, 2, 3 and 4) sensors short the jumper J2.
To use JTAG via expansion slot of the microcontroller socket remove these jumpers.
Motion control Connection:
L-1---->PA0; L-2---->PA1;
R-1---->PA2; R-2---->PA3;
PL3 (OC5A) ----> PWM left; PL4 (OC5B) ----> PWM right;
********************************************************************************/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <math.h> //included to support power function
#include "lcd.c"
#include "servo.h"
void port_init();
void timer5_init();
void velocity(unsigned char, unsigned char);
void motors_delay();
unsigned char ADC_Conversion(unsigned char);
unsigned char ADC_Value;
unsigned char flag = 0;
unsigned char flag1 = 0;
unsigned char flag2 = 0;
unsigned char turnR = 0;
unsigned char turnL = 0;
unsigned char Left_white_line = 0;
unsigned char Center_white_line = 0;
unsigned char Right_white_line = 0;
unsigned char Front_Sharp_Sensor=0;
unsigned char Front_IR_Sensor=0;
volatile unsigned long int ShaftCountLeft = 0; //to keep track of left position encoder
volatile unsigned long int ShaftCountRight = 0; //to keep track of right position encoder
volatile unsigned int Degrees; //to accept angle in degrees for turning
volatile unsigned long int pulse = 0; //to keep the track of the number of pulses generated by the color sensor
volatile unsigned long int red; // variable to store the pulse count when read_red function is called
volatile unsigned long int blue; // variable to store the pulse count when read_blue function is called
volatile unsigned long int green; // variable to store the pulse count when read_green function is called
int freeze=0;
//Function to configure LCD port
void lcd_port_config (void)
{
DDRC = DDRC | 0xF7; //all the LCD pin's direction set as output
PORTC = PORTC & 0x80; // all the LCD pins are set to logic 0 except PORTC 7
}
void buzzer_pin_config (void)
{
DDRC = DDRC | 0x08; //Setting PORTC 3 as output
PORTC = PORTC & 0xF7; //Setting PORTC 3 logic low to turnoff buzzer
}
void color_sensor_pin_config(void)
{
DDRD = DDRD | 0xFE; //set PD0 as input for color sensor output
PORTD = PORTD | 0x01;//Enable internal pull-up for PORTD 0 pin
}
//ADC pin configuration
void adc_pin_config (void)
{
DDRF = 0x00;
PORTF = 0x00;
DDRK = 0x00;
PORTK = 0x00;
}
//Function to configure ports to enable robot's
void motion_pin_config (void)
{
DDRA = DDRA | 0x0F;
PORTA = PORTA & 0xF0;
DDRL = DDRL | 0x18; //Setting PL3 and PL4 ns as output for PWM generation
PORTL = PORTL | 0x18; //PL3 and PL4 pins are for velocity control using PWM.
}
//Function to Initialize PORTS
void port_init()
{
lcd_port_config();
adc_pin_config();
motion_pin_config();
color_sensor_pin_config();//color sensor pin configuration
buzzer_pin_config();
servo1_pin_config(); //Configure PORTB 5 pin for servo motor 1 operation
servo2_pin_config(); //Configure PORTB 6 pin for servo motor 2 operation
servo3_pin_config(); //Configure PORTB 7 pin for servo motor 3 operation
}
void color_sensor_pin_interrupt_init(void) //Interrupt 0 enable
{
cli(); //Clears the global interrupt
EICRA = EICRA | 0x02; // INT0 is set to trigger with falling edge
EIMSK = EIMSK | 0x01; // Enable Interrupt INT0 for color sensor
sei(); // Enables the global interrupt
}
// Timer 5 initialized in PWM mode for velocity control
// Prescale:256
// PWM 8bit fast, TOP=0x00FF
// Timer Frequency:225.000Hz
void timer5_init()
{
TCCR5B = 0x00; //Stop
TCNT5H = 0xFF; //Counter higher 8-bit value to which OCR5xH value is compared with
TCNT5L = 0x01; //Counter lower 8-bit value to which OCR5xH value is compared with
OCR5AH = 0x00; //Output compare register high value for Left Motor
OCR5AL = 0xFF; //Output compare register low value for Left Motor
OCR5BH = 0x00; //Output compare register high value for Right Motor
OCR5BL = 0xFF; //Output compare register low value for Right Motor
OCR5CH = 0x00; //Output compare register high value for Motor C1
OCR5CL = 0xFF; //Output compare register low value for Motor C1
TCCR5A = 0xA9; /*{COM5A1=1, COM5A0=0; COM5B1=1, COM5B0=0; COM5C1=1 COM5C0=0}
For Overriding normal port functionality to OCRnA outputs.
{WGM51=0, WGM50=1} Along With WGM52 in TCCR5B for Selecting FAST PWM 8-bit Mode*/
TCCR5B = 0x0B; //WGM12=1; CS12=0, CS11=1, CS10=1 (Prescaler=64)
}
void adc_init()
{
ADCSRA = 0x00;
ADCSRB = 0x00; //MUX5 = 0
ADMUX = 0x20; //Vref=5V external --- ADLAR=1 --- MUX4:0 = 0000
ACSR = 0x80;
ADCSRA = 0x86; //ADEN=1 --- ADIE=1 --- ADPS2:0 = 1 1 0
}
//Function For ADC Conversion
unsigned char ADC_Conversion(unsigned char Ch)
{
unsigned char a;
if(Ch>7)
{
ADCSRB = 0x08;
}
Ch = Ch & 0x07;
ADMUX= 0x20| Ch;
ADCSRA = ADCSRA | 0x40; //Set start conversion bit
while((ADCSRA&0x10)==0); //Wait for conversion to complete
a=ADCH;
ADCSRA = ADCSRA|0x10; //clear ADIF (ADC Interrupt Flag) by writing 1 to it
ADCSRB = 0x00;
return a;
}
//Function To Print Sesor Values At Desired Row And Coloumn Location on LCD
void print_sensor(char row, char coloumn,unsigned char channel)
{
ADC_Value = ADC_Conversion(channel);
lcd_print(row, coloumn, ADC_Value, 3);
}
void buzzer_on (void)
{
unsigned char port_restore = 0;
port_restore = PINC;
port_restore = port_restore | 0x08;
PORTC = port_restore;
}
void buzzer_off (void)
{
unsigned char port_restore = 0;
port_restore = PINC;
port_restore = port_restore & 0xF7;
PORTC = port_restore;
}
//Function for velocity control
void velocity (unsigned char left_motor, unsigned char right_motor)
{
OCR5AL = (unsigned char)left_motor;
OCR5BL = (unsigned char)right_motor;
}
//Function used for setting motor's direction
void motion_set (unsigned char Direction)
{
unsigned char PortARestore = 0;
Direction &= 0x0F; // removing upper nibbel for the protection
PortARestore = PORTA; // reading the PORTA original status
PortARestore &= 0xF0; // making lower direction nibbel to 0
PortARestore |= Direction; // adding lower nibbel for forward command and restoring the PORTA status
PORTA = PortARestore; // executing the command
}
void forward (void)
{
motion_set (0x06);
}
void stop (void)
{
motion_set (0x00);
}
void left (void) //Left wheel backward, Right wheel forward
{
motion_set(0x05);
}
void right (void) //Left wheel forward, Right wheel backward
{
motion_set(0x0A);
}
void soft_left (void) //Left wheel stationary, Right wheel forward
{
motion_set(0x04);
}
void soft_right (void) //Left wheel forward, Right wheel is stationary
{
motion_set(0x02);
}
void back (void) //both wheels backward
{
motion_set(0x09);
}
void soft_left_2 (void) //Left wheel backward, right wheel stationary
{
motion_set(0x01);
}
void soft_right_2 (void) //Left wheel stationary, Right wheel backward
{
motion_set(0x08);
}
void left_position_encoder_interrupt_init (void) //Interrupt 4 enable
{
cli(); //Clears the global interrupt
EICRB = EICRB | 0x02; // INT4 is set to trigger with falling edge
EIMSK = EIMSK | 0x10; // Enable Interrupt INT4 for left position encoder
sei(); // Enables the global interrupt
}
void right_position_encoder_interrupt_init (void) //Interrupt 5 enable
{
cli(); //Clears the global interrupt
EICRB = EICRB | 0x08; // INT5 is set to trigger with falling edge
EIMSK = EIMSK | 0x20; // Enable Interrupt INT5 for right position encoder
sei(); // Enables the global interrupt
}
//ISR for right position encoder
ISR(INT5_vect)
{
ShaftCountRight++; //increment right shaft position count
}
//ISR for left position encoder
ISR(INT4_vect)
{
ShaftCountLeft++; //increment left shaft position count
}
ISR(INT0_vect)
{
pulse++; //increment on receiving pulse from the color sensor
}
void angle_rotate(unsigned int Degrees)
{
float ReqdShaftCount = 0;
unsigned long int ReqdShaftCountInt = 0;
ReqdShaftCount = (float) Degrees/ 4.090; // division by resolution to get shaft count
ReqdShaftCountInt = (unsigned int) ReqdShaftCount;
ShaftCountRight = 0;
ShaftCountLeft = 0;
while (1)
{
if((ShaftCountRight >= ReqdShaftCountInt) | (ShaftCountLeft >= ReqdShaftCountInt))
{
break;
}
}
stop(); //Stop robot
}
//Function used for moving robot forward by specified distance
void black_line()
{
Left_white_line = ADC_Conversion(3); //Getting data of Left WL Sensor
Center_white_line = ADC_Conversion(2); //Getting data of Center WL Sensor
Right_white_line = ADC_Conversion(1); //Getting data of Right WL Sensor
if(Left_white_line > 0x18 && Center_white_line <0x18 && Right_white_line <0x18)
{
stop();
soft_left(); //soft left
}
if(Left_white_line<0x18 && Center_white_line > 0x18 && Right_white_line <0x18)
{
forward();
}
if(Left_white_line< 0x18 && Center_white_line <0x18 && Right_white_line >0x18)
{
stop();
soft_right(); //soft right
}
}
void linear_distance_mm(unsigned int DistanceInMM)
{
float ReqdShaftCount = 0;
unsigned long int ReqdShaftCountInt = 0;
ReqdShaftCount = DistanceInMM / 5.338; // division by resolution to get shaft count
ReqdShaftCountInt = (unsigned long int) ReqdShaftCount;
ShaftCountRight = 0;
while(1)
{ if(ShaftCountRight < ReqdShaftCountInt)
{
black_line();
}
else
{
break;
}
}
stop(); //Stop robot
}
void forward_mm(unsigned int DistanceInMM)
{
forward();
linear_distance_mm(DistanceInMM);
}
void back_mm(unsigned int DistanceInMM)
{
back();
linear_distance_mm(DistanceInMM);
}
void left_degrees(unsigned int Degrees)
{
// 88 pulses for 360 degrees rotation 4.090 degrees per count
left(); //Turn left
angle_rotate(Degrees);
}
void right_degrees(unsigned int Degrees)
{
// 88 pulses for 360 degrees rotation 4.090 degrees per count
right(); //Turn right
angle_rotate(Degrees);
}
void soft_left_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_left(); //Turn soft left
Degrees=Degrees*2;
angle_rotate(Degrees);
}
void soft_right_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_right(); //Turn soft right
Degrees=Degrees*2;
angle_rotate(Degrees);
}
void soft_left_2_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_left_2(); //Turn reverse soft left
Degrees=Degrees*2;
angle_rotate(Degrees);
}
void soft_right_2_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_right_2(); //Turn reverse soft right
Degrees=Degrees*2;
angle_rotate(Degrees);
}
void init_devices (void)
{
cli(); //Clears the global interrupt
port_init(); //Initializes all the ports
left_position_encoder_interrupt_init();
right_position_encoder_interrupt_init();
color_sensor_pin_interrupt_init();
adc_init();
timer1_init();
timer5_init(); //timer4 overflow interrupt enable
sei(); // Enables the global interrupt
}
void filter_red(void) //Used to select red filter
{
//Filter Select - red filter
PORTD = PORTD & 0xBF; //set S2 low
PORTD = PORTD & 0x7F; //set S3 low
}
void filter_green(void) //Used to select green filter
{
//Filter Select - green filter
PORTD = PORTD | 0x40; //set S2 High
PORTD = PORTD | 0x80; //set S3 High
}
void filter_blue(void) //Used to select blue filter
{
//Filter Select - blue filter
PORTD = PORTD & 0xBF; //set S2 low
PORTD = PORTD | 0x80; //set S3 High
}
void filter_clear(void) //select no filter
{
//Filter Select - no filter
PORTD = PORTD | 0x40; //set S2 High
PORTD = PORTD & 0x7F; //set S3 Low
}
void color_sensor_scaling() //This function is used to select the scaled down version of the original frequency of the output generated by the color sensor, generally 20% scaling is preferable, though you can change the values as per your application by referring datasheet
{
//Output Scaling 20% from datasheet
//PORTD = PORTD & 0xEF;
PORTD = PORTD | 0x10; //set S0 high
//PORTD = PORTD & 0xDF; //set S1 low
PORTD = PORTD | 0x20; //set S1 high
}
void color_read(void)
{
//Color
//Red
filter_red(); //select red filter
pulse=0; //reset the count to 0
_delay_ms(1000); //capture the pulses for 100 ms or 0.1 second
red = pulse; //store the count in variable called red
lcd_cursor(1,1); //set the cursor on row 1, column 1
lcd_string("R"); // Display "Red Pulses" on LCD
lcd_print(1,3,red,5); //Print the count on second row
_delay_ms(100);// Display for 1000ms or 1 second
//Clear the LCD
//Green
filter_green(); //select green filter
pulse=0; //reset the count to 0
_delay_ms(1000); //capture the pulses for 100 ms or 0.1 second
green = pulse; //store the count in variable called green
lcd_cursor(1,9); //set the cursor on row 1, column 1
lcd_string("G"); // Display "Green Pulses" on LCD
lcd_print(1,11,green,5); //Print the count on second row
_delay_ms(100);// Display for 1000ms or 1 second
//Clear the LCD
//Blue
filter_blue(); //select blue filter
pulse=0; //reset the count to 0
_delay_ms(1000); //capture the pulses for 100 ms or 0.1 second
blue = pulse; //store the count in variable called blue
lcd_cursor(2,1); //set the cursor on row 1, column 1
lcd_string("B"); // Display "Blue Pulses" on LCD
lcd_print(2,3,blue,5); //Print the count on second row
_delay_ms(100); // Display for 1000ms or 1 second
//Clear the LCD
}
void red_show()
{
lcd_wr_command(0x01); //Clear the LCD
lcd_cursor(1,4); //set the cursor on row 1, column 4
lcd_string("RED"); // Display " RED" on LCD
_delay_ms(100); // Display for 1000ms or 1 second
}
void green_show()
{
lcd_wr_command(0x01); //Clear the LCD
lcd_cursor(1,4); //set the cursor on row 1, column 4
lcd_string("GREEN"); // Display " GREEN" on LCD
_delay_ms(100); // Display for 1000ms or 1 second
}
void blue_show()
{
lcd_wr_command(0x01); //Clear the LCD
lcd_cursor(1,4); //set the cursor on row 1, column 4
lcd_string("BLUE"); // Display " BLUE" on LCD
_delay_ms(100); // Display for 1000ms or 1 second
}
void black_show()
{
lcd_wr_command(0x01); //Clear the LCD
lcd_cursor(1,4); //set the cursor on row 1, column 4
lcd_string("BLACK"); // Display " BLUE" on LCD
_delay_ms(100); // Display for 1000ms or 1 second
}
void adjust_left()
{
while(1)
{
Left_white_line = ADC_Conversion(3); //Getting data of Left WL Sensor
Center_white_line = ADC_Conversion(2); //Getting data of Center WL Sensor
Right_white_line = ADC_Conversion(1); //Getting data of Right WL Sensor
if(Left_white_line<0x18 && Center_white_line>0x18 && Right_white_line<0x18) //this condition will check weather robot is on black line or not and if it is on black line than it will break the loop
{
break;
}
left();//this will take left turn until it find black line
}
}
/*
* Function Name: adjust_right()
* Input :
* Output :
* Logic : it will rotate right until robot comes on the black line
* Example Call : adjust_right();
*/
void adjust_right()
{
while(1)
{
Left_white_line = ADC_Conversion(3); //Getting data of Left WL Sensor
Center_white_line = ADC_Conversion(2); //Getting data of Center WL Sensor
Right_white_line = ADC_Conversion(1); //Getting data of Right WL Sensor
if(Left_white_line<0x18 && Center_white_line>0x18 && Right_white_line<0x18)//this condition will check weather robot is on black line or not and if it is on black line than it will break the loop
{
break;
}
right(); //it will take right turn until it find black line
}
}
void colorsensor()
{
color_read();
if ((red < 10000) && (green < 10000) && (blue < 10000))
{
black_show();
_delay_ms(1000);
}
else if((red > green) && (red > blue)) //this is condition for detection red pizza
{
red_show();
_delay_ms(1000);
}
else if((green > blue) && (green>red)) //this is condition for detection green pizza
{
green_show();
_delay_ms(1000);
}
else if((blue > red)&& (blue > green)) //this is condition for detection blue pizza
{
blue_show();
_delay_ms(1000);
}
}
void turn_right()
{
right_degrees(30);
adjust_right();
turnR++;
}
void turn_left()
{
left_degrees(30);
adjust_left();
turnL++;
}
void blackline_sharp()
{
Left_white_line = ADC_Conversion(3); //Getting data of Left WL Sensor
Center_white_line = ADC_Conversion(2); //Getting data of Center WL Sensor
Right_white_line = ADC_Conversion(1); //Getting data of Right WL Sensor
Front_Sharp_Sensor = ADC_Conversion(11);
Front_IR_Sensor = ADC_Conversion(6);
/*print_sensor(1,1,3); //Prints value of White Line Sensor1
print_sensor(1,5,2); //Prints Value of White Line Sensor2
print_sensor(1,9,1); //Prints Value of White Line Sensor3
print_sensor(2,4,11); //Prints Value of Front Sharp Sensor
print_sensor(2,8,6); //Prints Value of Front IR Sensor
*/
forward();
if(Left_white_line > 0x18 && Center_white_line <0x18 && Right_white_line <0x18)
{
soft_left(); //soft left
}
if(Left_white_line<0x18 && Center_white_line > 0x18 && Right_white_line <0x18)
{
forward_mm(200);
//Moves robot forward 200mm
stop();
_delay_ms(100);
servo_2(1);
colorsensor();
servo_2(179);
colorsensor();
}
if(Left_white_line< 0x18 && Center_white_line <0x18 && Right_white_line >0x18)
{
soft_right(); //soft right
}
if((Left_white_line> 0x18 && Center_white_line >0x18) || (Right_white_line >0x18 && Center_white_line >0x18))
{
forward();
if(Left_white_line< 0x18 && Center_white_line <0x18 && Right_white_line <0x18)
{
if( turnR == turnL )
{
turn_right();
forward_mm(200); //Moves robot forward 200mm
stop();
_delay_ms(500);
forward();
if((Left_white_line> 0x18 && Center_white_line >0x18) || (Right_white_line >0x18 && Center_white_line >0x18))
turn_right();
}
else if ( turnR!=turnL)
{
turn_left();
forward_mm(200); //Moves robot forward 200mm
stop();
_delay_ms(500);
forward();
if((Left_white_line> 0x18 && Center_white_line >0x18) || (Right_white_line >0x18 && Center_white_line >0x18))
turn_left();
}
else
stop();
}
/* if(Front_Sharp_Sensor>0x45 || Front_IR_Sensor<0xF0)
{
stop();
buzzer_on();
_delay_ms(100);
buzzer_off();
}
*/
}
}
//Main Function
int main()
{
init_devices();
lcd_set_4bit();
lcd_init();
color_sensor_scaling();
velocity(250,242);
/*forward();*/
while(1)
{
/*colorsensor();*/
blackline_sharp();
/* forward_mm(200); //Moves robot forward 200mm
stop();
_delay_ms(500);
back_mm(400); //Moves robot backward 100mm
stop();
_delay_ms(500);
left_degrees(90); //Rotate robot left by 90 degrees
stop();
_delay_ms(500);
right_degrees(90); //Rotate robot right by 90 degrees
stop();
_delay_ms(500);
*/
}
servo_2(90);
_delay_ms(2000);
servo_2_free();
while(1);
}