-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStressDQN.py
251 lines (212 loc) · 9.2 KB
/
StressDQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
""" A DQN for analysing synaptic weights durign stress """
# Import dependencies
import gym
import math
import random
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count
import tqdm
import ipdb
import numpy as np
import sys
sys.path.append("/data/dje4001/DNN_THREAT/")
from record_network import Record,tallformat
#Import torch and torch tools
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('/data/dje4001/StressDQN')
import torch.optim.lr_scheduler as lr_scheduler
# Set current game
env_name="SpaceInvaders-v4"
env = gym.make(env_name)
# set up matplotlib REPLACE WITH TENSORBOARD
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
from IPython import display
plt.ion()
# Set device name
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Experience Replay class
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.memory = deque([], maxlen=capacity)
def push(self, *args):
"""Save a transition"""
self.memory.append(Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
# Custom DQN agent
class DQN(nn.Module):
def __init__(self, n_channels, n_actions):
super(DQN, self).__init__()
self.layer1 = nn.Conv2d(n_channels, 100,8,stride=2)
self.layer2 = nn.Conv2d(100, 64,8,stride=2)
self.layer3 = nn.Conv2d(64, 32,8,stride=2)
self.layer4 = nn.Linear(9408, 512)
self.layer5 = nn.Linear(512, 128)
self.layer6 = nn.Linear(128, n_actions)
# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):
x=torch.reshape(x,(x.shape[0],x.shape[3],x.shape[1],x.shape[2]))
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = F.relu(self.layer3(x))
x=torch.reshape(x,(x.shape[0],x.shape[1]*x.shape[2]*x.shape[3]))
x = F.relu(self.layer4(x))
x = F.relu(self.layer5(x))
return self.layer6(x)
#Set hyperparameters:
# BATCH_SIZE is the number of transitions sampled from the replay buffer
# GAMMA is the discount factor as mentioned in the previous section
# EPS_START is the starting value of epsilon
# EPS_END is the final value of epsilon
# EPS_DECAY controls the rate of exponential decay of epsilon, higher means a slower decay
# TAU is the update rate of the target network
# LR is the learning rate of the AdamW optimizer
BATCH_SIZE = 128
GAMMA = 0.99
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 1000
TAU = 0.005
LR = 0.1
#Custom function for changing the learning rate.
def custom_lr_scheduler(epoch):
# LR to be 0.1 * (1/1+0.01*epoch)
base_lr = 0.1
factor = 0.01
return base_lr/(1+factor*epoch)
# Get number of actions from gym action space
n_actions = env.action_space.n
# Get the number of state observations
state, info = env.reset()
n_observations = state.shape[0] * state.shape[1]
# Create neural networks
policy_net = DQN(3, n_actions).to(device)
target_net = DQN(3, n_actions).to(device)
rec=Record("/data/dje4001/DNN_THREAT/model_data/",env_name)
target_net.load_state_dict(policy_net.state_dict())
optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
scheduler = lr_scheduler.LambdaLR(optimizer, custom_lr_scheduler)
memory = ReplayMemory(10000)
steps_done = 0
# Selects action while maintaining exploration:exploitation balance via epsilon
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return the largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
#reshaped_state=torch.reshape(state,(n_observations,1))
return policy_net(state).max(1)[1].view(-1,1)
else:
return torch.tensor([[env.action_space.sample()]], device=device, dtype=torch.long)
episode_durations = []
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
#reshaped_state_batch=torch.reshape(state_batch,(BATCH_SIZE,n_observations))
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
with torch.no_grad():
#try:
# reshaped_nfns=torch.reshape(non_final_next_states,(BATCH_SIZE,n_observations))
#except:
# reshaped_nfns=torch.reshape(non_final_next_states,(non_final_next_states.shape[0],n_observations))
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0]
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
# In-place gradient clipping
torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100)
optimizer.step()
if torch.cuda.is_available():
num_episodes = 10000
else:
num_episodes = 50
for i_episode in tqdm.tqdm(range(num_episodes)):
scheduler.step()
# Initialize the environment and get it's state
state, info = env.reset()
#state=np.mean(state,axis=2)
state = torch.tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
cumulative_reward=[]
for t in count():
action = select_action(state)
observation, reward, terminated, truncated, _ = env.step(action.item())
cumulative_reward.append(reward)
reward = torch.tensor([reward], device=device)
done = terminated or truncated
if terminated:
next_state = None
else:
#observation=np.mean(observation,axis=2)
next_state = torch.tensor(observation, dtype=torch.float32, device=device).unsqueeze(0)
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the policy network)
optimize_model()
# Soft update of the target network's weights
# θ′ ← τ θ + (1 −τ )θ′
target_net_state_dict = target_net.state_dict()
policy_net_state_dict = policy_net.state_dict()
for key in policy_net_state_dict:
target_net_state_dict[key] = policy_net_state_dict[key]*TAU + target_net_state_dict[key]*(1-TAU)
target_net.load_state_dict(target_net_state_dict)
if done:
episode_durations.append(t + 1)
#plot_durations(reward)
# if i_episode == 0 or i_episode == num_episodes - 1:
# result.release()
break
#Record network weights and biases
rec.record(target_net,t,i_episode, 'target')
rec.record(policy_net,t,i_episode, 'policy')
#Calculate reward
cumulative_reward=np.array(cumulative_reward)
cumulative_reward=np.sum(cumulative_reward)
print(cumulative_reward)
writer.add_scalar("Reward/Episode", cumulative_reward, i_episode)