forked from dennybritz/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolicy_monitor.py
110 lines (89 loc) · 3.81 KB
/
policy_monitor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import sys
import os
import itertools
import collections
import numpy as np
import tensorflow as tf
import time
from inspect import getsourcefile
current_path = os.path.dirname(os.path.abspath(getsourcefile(lambda:0)))
import_path = os.path.abspath(os.path.join(current_path, "../.."))
if import_path not in sys.path:
sys.path.append(import_path)
from gym.wrappers import Monitor
import gym
from lib.atari.state_processor import StateProcessor
from lib.atari import helpers as atari_helpers
from estimators import ValueEstimator, PolicyEstimator
from worker import make_copy_params_op
class PolicyMonitor(object):
"""
Helps evaluating a policy by running an episode in an environment,
saving a video, and plotting summaries to Tensorboard.
Args:
env: environment to run in
policy_net: A policy estimator
summary_writer: a tf.train.SummaryWriter used to write Tensorboard summaries
"""
def __init__(self, env, policy_net, summary_writer, saver=None):
self.video_dir = os.path.join(summary_writer.get_logdir(), "../videos")
self.video_dir = os.path.abspath(self.video_dir)
self.env = Monitor(env, directory=self.video_dir, video_callable=lambda x: True, resume=True)
self.global_policy_net = policy_net
self.summary_writer = summary_writer
self.saver = saver
self.sp = StateProcessor()
self.checkpoint_path = os.path.abspath(os.path.join(summary_writer.get_logdir(), "../checkpoints/model"))
try:
os.makedirs(self.video_dir)
except FileExistsError:
pass
# Local policy net
with tf.variable_scope("policy_eval"):
self.policy_net = PolicyEstimator(policy_net.num_outputs)
# Op to copy params from global policy/value net parameters
self.copy_params_op = make_copy_params_op(
tf.contrib.slim.get_variables(scope="global", collection=tf.GraphKeys.TRAINABLE_VARIABLES),
tf.contrib.slim.get_variables(scope="policy_eval", collection=tf.GraphKeys.TRAINABLE_VARIABLES))
def _policy_net_predict(self, state, sess):
feed_dict = { self.policy_net.states: [state] }
preds = sess.run(self.policy_net.predictions, feed_dict)
return preds["probs"][0]
def eval_once(self, sess):
with sess.as_default(), sess.graph.as_default():
# Copy params to local model
global_step, _ = sess.run([tf.contrib.framework.get_global_step(), self.copy_params_op])
# Run an episode
done = False
state = atari_helpers.atari_make_initial_state(self.sp.process(self.env.reset()))
total_reward = 0.0
episode_length = 0
while not done:
action_probs = self._policy_net_predict(state, sess)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
next_state, reward, done, _ = self.env.step(action)
next_state = atari_helpers.atari_make_next_state(state, self.sp.process(next_state))
total_reward += reward
episode_length += 1
state = next_state
# Add summaries
episode_summary = tf.Summary()
episode_summary.value.add(simple_value=total_reward, tag="eval/total_reward")
episode_summary.value.add(simple_value=episode_length, tag="eval/episode_length")
self.summary_writer.add_summary(episode_summary, global_step)
self.summary_writer.flush()
if self.saver is not None:
self.saver.save(sess, self.checkpoint_path)
tf.logging.info("Eval results at step {}: total_reward {}, episode_length {}".format(global_step, total_reward, episode_length))
return total_reward, episode_length
def continuous_eval(self, eval_every, sess, coord):
"""
Continuously evaluates the policy every [eval_every] seconds.
"""
try:
while not coord.should_stop():
self.eval_once(sess)
# Sleep until next evaluation cycle
time.sleep(eval_every)
except tf.errors.CancelledError:
return