-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathada_track.py
274 lines (254 loc) · 10.1 KB
/
ada_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import os.path as osp
import cv2
import logging
import argparse
import motmetrics as mm
import numpy as np
import torch
import src.lib.datasets.dataset.jde as datasets
from src.lib.ada_opts import ada_opts
from src.lib.tracker.ada_multitracker import AdaTracker
from src.lib.tracking_utils import visualization as vis
from src.lib.tracker.multitracker import JDETracker
from src.lib.tracking_utils.evaluation import Evaluator
from src.lib.tracking_utils.log import logger
from src.lib.tracking_utils.timer import Timer
from src.lib.tracking_utils.utils import mkdir_if_missing
def write_results(filename, results, data_type):
if data_type == 'mot':
save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
elif data_type == 'kitti':
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
else:
raise ValueError(data_type)
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids in results:
if data_type == 'kitti':
frame_id -= 1
for tlwh, track_id in zip(tlwhs, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
x2, y2 = x1 + w, y1 + h
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h)
f.write(line)
logger.info('save results to {}'.format(filename))
def write_results_score(filename, results, data_type):
if data_type == 'mot':
save_format = '{frame},{id},{x1},{y1},{w},{h},{s},1,-1,-1,-1\n'
elif data_type == 'kitti':
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
else:
raise ValueError(data_type)
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids, scores in results:
if data_type == 'kitti':
frame_id -= 1
for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
if track_id < 0:
continue
x1, y1, w, h = tlwh
x2, y2 = x1 + w, y1 + h
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, s=score)
f.write(line)
logger.info('save results to {}'.format(filename))
def eval_seq(opt, dataloader, data_type, result_filename, save_dir=None, show_image=True, frame_rate=30, use_cuda=True):
if save_dir:
mkdir_if_missing(save_dir)
tracker = AdaTracker(opt, frame_rate=frame_rate)
timer = Timer()
results = []
frame_id = 0
# for path, img, img0 in dataloader:
for i, (path, img, img0) in enumerate(dataloader):
# if i % 8 != 0:
# continue
if frame_id % 20 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
# run tracking
timer.tic()
if use_cuda:
blob = torch.from_numpy(img).cuda().unsqueeze(0)
else:
blob = torch.from_numpy(img).unsqueeze(0)
online_targets = tracker.update(blob, img0)
online_tlwhs = []
online_ids = []
# online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
# online_scores.append(t.score)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids))
if show_image or save_dir is not None:
online_im = vis.plot_tracking(img0, online_tlwhs, online_ids, frame_id=frame_id,
fps=1. / timer.average_time)
if show_image:
cv2.imshow('online_im', online_im)
cv2.waitKey(1)
if save_dir is not None:
cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im)
frame_id += 1
# save results
write_results(result_filename, results, data_type)
# write_results_score(result_filename, results, data_type)
return frame_id, timer.average_time, timer.calls
def main(opt, data_root='/data/MOT16/train', det_root=None, seqs=('MOT16-05',), exp_name='demo',
save_images=False, save_videos=False, show_image=True):
logger.setLevel(logging.INFO)
result_root = os.path.join(data_root, '..', 'results', exp_name)
mkdir_if_missing(result_root)
data_type = 'mot'
# run tracking
accs = []
n_frame = 0
timer_avgs, timer_calls = [], []
for seq in seqs:
output_dir = os.path.join(data_root, '..', 'outputs', exp_name, seq) if save_images or save_videos else None
print('### output_dir:', output_dir)
logger.info('start seq: {}'.format(seq))
dataloader = datasets.LoadImages(osp.join(data_root, seq, 'img1'), opt.img_size)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read()
frame_rate = int(meta_info[meta_info.find('frameRate') + 10:meta_info.find('\nseqLength')])
nf, ta, tc = eval_seq(opt, dataloader, data_type, result_filename,
save_dir=output_dir, show_image=show_image, frame_rate=frame_rate)
n_frame += nf
timer_avgs.append(ta)
timer_calls.append(tc)
# eval
logger.info('Evaluate seq: {}'.format(seq))
evaluator = Evaluator(data_root, seq, data_type)
accs.append(evaluator.eval_file(result_filename))
if save_videos:
output_video_path = osp.join(output_dir, '{}.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format(output_dir, output_video_path)
os.system(cmd_str)
timer_avgs = np.asarray(timer_avgs)
timer_calls = np.asarray(timer_calls)
all_time = np.dot(timer_avgs, timer_calls)
avg_time = all_time / np.sum(timer_calls)
logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(all_time, 1.0 / avg_time))
# get summary
metrics = mm.metrics.motchallenge_metrics
mh = mm.metrics.create()
summary = Evaluator.get_summary(accs, seqs, metrics)
strsummary = mm.io.render_summary(
summary,
formatters=mh.formatters,
namemap=mm.io.motchallenge_metric_names
)
print(strsummary)
Evaluator.save_summary(summary, os.path.join(result_root, 'summary_{}.xlsx'.format(exp_name)))
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
opt = ada_opts().init()
if not opt.val_mot16:
seqs_str = '''KITTI-13
KITTI-17
ADL-Rundle-6
PETS09-S2L1
TUD-Campus
TUD-Stadtmitte'''
# seqs_str = '''TUD-Campus'''
data_root = os.path.join(opt.data_dir, 'MOT15/images/train')
else:
seqs_str = '''MOT16-02
MOT16-04
MOT16-05
MOT16-09
MOT16-10
MOT16-11
MOT16-13'''
data_root = os.path.join(opt.data_dir, 'MOT16/train')
if opt.test_mot16:
seqs_str = '''MOT16-01
MOT16-03
MOT16-06
MOT16-07
MOT16-08
MOT16-12
MOT16-14'''
data_root = os.path.join(opt.data_dir, 'MOT16/test')
if opt.test_mot15:
seqs_str = '''ADL-Rundle-1
ADL-Rundle-3
AVG-TownCentre
ETH-Crossing
ETH-Jelmoli
ETH-Linthescher
KITTI-16
KITTI-19
PETS09-S2L2
TUD-Crossing
Venice-1'''
data_root = os.path.join(opt.data_dir, 'MOT15/images/test')
if opt.test_mot17:
seqs_str = '''
MOT17-01-SDP
MOT17-03-SDP
MOT17-06-SDP
MOT17-07-SDP
MOT17-08-SDP
MOT17-12-SDP
MOT17-14-SDP
'''
data_root = os.path.join(opt.data_dir, 'MOT17/images/test')
if opt.val_mot17:
seqs_str = '''MOT17-02-SDP
MOT17-04-SDP
MOT17-05-SDP
MOT17-09-SDP
MOT17-10-SDP
MOT17-11-SDP
MOT17-13-SDP'''
data_root = os.path.join(opt.data_dir, 'MOT17/images/train')
if opt.val_mot15:
seqs_str = '''
KITTI-17
ETH-Bahnhof
ETH-Sunnyday
PETS09-S2L1
TUD-Campus
TUD-Stadtmitte
'''
data_root = os.path.join(opt.data_dir, 'MOT15/images/train')
if opt.val_mot20:
seqs_str = '''MOT20-01
MOT20-02
MOT20-03
MOT20-05
'''
# if opt.val_mot20min:
# seqs_str = '''MOT20-01
# MOT20-02
# MOT20-03
# MOT20-05
# '''
# data_root = os.path.join(opt.data_dir, 'MOT20min/images/train')
data_root = os.path.join(opt.data_dir, 'MOT20/images/train')
if opt.test_mot20:
seqs_str = '''MOT20-04
MOT20-06
MOT20-07
MOT20-08
'''
data_root = os.path.join(opt.data_dir, 'MOT20/images/test')
seqs = [seq.strip() for seq in seqs_str.split()]
main(opt,
data_root=data_root,
seqs=seqs,
exp_name='MOT_17_test',
show_image=True,
save_images=False,
save_videos=False)