-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path__init__.py
218 lines (204 loc) · 12 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import sys
import contextlib
import torch
try:
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
legacy = True
except Exception:
legacy = False
from .hijacks import ipex_hijacks
# pylint: disable=protected-access, missing-function-docstring, line-too-long
def ipex_init(): # pylint: disable=too-many-statements
try:
if hasattr(torch, "cuda") and hasattr(torch.cuda, "is_xpu_hijacked") and torch.cuda.is_xpu_hijacked:
return True, "Skipping IPEX hijack"
else:
try: # force xpu device on torch compile and triton
torch._inductor.utils.GPU_TYPES = ["xpu"]
torch._inductor.utils.get_gpu_type = lambda *args, **kwargs: "xpu"
from triton import backends as triton_backends # pylint: disable=import-error
triton_backends.backends["nvidia"].driver.is_active = lambda *args, **kwargs: False
except Exception:
pass
# Replace cuda with xpu:
torch.cuda.current_device = torch.xpu.current_device
torch.cuda.current_stream = torch.xpu.current_stream
torch.cuda.device = torch.xpu.device
torch.cuda.device_count = torch.xpu.device_count
torch.cuda.device_of = torch.xpu.device_of
torch.cuda.get_device_name = torch.xpu.get_device_name
torch.cuda.get_device_properties = torch.xpu.get_device_properties
torch.cuda.init = torch.xpu.init
torch.cuda.is_available = torch.xpu.is_available
torch.cuda.is_initialized = torch.xpu.is_initialized
torch.cuda.is_current_stream_capturing = lambda: False
torch.cuda.set_device = torch.xpu.set_device
torch.cuda.stream = torch.xpu.stream
torch.cuda.synchronize = torch.xpu.synchronize
torch.cuda.Event = torch.xpu.Event
torch.cuda.Stream = torch.xpu.Stream
torch.Tensor.cuda = torch.Tensor.xpu
torch.Tensor.is_cuda = torch.Tensor.is_xpu
torch.nn.Module.cuda = torch.nn.Module.xpu
torch.cuda.Optional = torch.xpu.Optional
torch.cuda.__cached__ = torch.xpu.__cached__
torch.cuda.__loader__ = torch.xpu.__loader__
torch.cuda.Tuple = torch.xpu.Tuple
torch.cuda.streams = torch.xpu.streams
torch.cuda.Any = torch.xpu.Any
torch.cuda.__doc__ = torch.xpu.__doc__
torch.cuda.default_generators = torch.xpu.default_generators
torch.cuda._get_device_index = torch.xpu._get_device_index
torch.cuda.__path__ = torch.xpu.__path__
torch.cuda.set_stream = torch.xpu.set_stream
torch.cuda.torch = torch.xpu.torch
torch.cuda.Union = torch.xpu.Union
torch.cuda.__annotations__ = torch.xpu.__annotations__
torch.cuda.__package__ = torch.xpu.__package__
torch.cuda.__builtins__ = torch.xpu.__builtins__
torch.cuda.List = torch.xpu.List
torch.cuda._lazy_init = torch.xpu._lazy_init
torch.cuda.StreamContext = torch.xpu.StreamContext
torch.cuda._lazy_call = torch.xpu._lazy_call
torch.cuda.random = torch.xpu.random
torch.cuda._device = torch.xpu._device
torch.cuda.__name__ = torch.xpu.__name__
torch.cuda._device_t = torch.xpu._device_t
torch.cuda.__spec__ = torch.xpu.__spec__
torch.cuda.__file__ = torch.xpu.__file__
# torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing
if legacy:
torch.cuda.os = torch.xpu.os
torch.cuda.Device = torch.xpu.Device
torch.cuda.warnings = torch.xpu.warnings
torch.cuda.classproperty = torch.xpu.classproperty
torch.UntypedStorage.cuda = torch.UntypedStorage.xpu
if float(ipex.__version__[:3]) < 2.3:
torch.cuda._initialization_lock = torch.xpu.lazy_init._initialization_lock
torch.cuda._initialized = torch.xpu.lazy_init._initialized
torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork
torch.cuda._lazy_seed_tracker = torch.xpu.lazy_init._lazy_seed_tracker
torch.cuda._queued_calls = torch.xpu.lazy_init._queued_calls
torch.cuda._tls = torch.xpu.lazy_init._tls
torch.cuda.threading = torch.xpu.lazy_init.threading
torch.cuda.traceback = torch.xpu.lazy_init.traceback
torch.cuda._lazy_new = torch.xpu._lazy_new
torch.cuda.FloatTensor = torch.xpu.FloatTensor
torch.cuda.FloatStorage = torch.xpu.FloatStorage
torch.cuda.BFloat16Tensor = torch.xpu.BFloat16Tensor
torch.cuda.BFloat16Storage = torch.xpu.BFloat16Storage
torch.cuda.HalfTensor = torch.xpu.HalfTensor
torch.cuda.HalfStorage = torch.xpu.HalfStorage
torch.cuda.ByteTensor = torch.xpu.ByteTensor
torch.cuda.ByteStorage = torch.xpu.ByteStorage
torch.cuda.DoubleTensor = torch.xpu.DoubleTensor
torch.cuda.DoubleStorage = torch.xpu.DoubleStorage
torch.cuda.ShortTensor = torch.xpu.ShortTensor
torch.cuda.ShortStorage = torch.xpu.ShortStorage
torch.cuda.LongTensor = torch.xpu.LongTensor
torch.cuda.LongStorage = torch.xpu.LongStorage
torch.cuda.IntTensor = torch.xpu.IntTensor
torch.cuda.IntStorage = torch.xpu.IntStorage
torch.cuda.CharTensor = torch.xpu.CharTensor
torch.cuda.CharStorage = torch.xpu.CharStorage
torch.cuda.BoolTensor = torch.xpu.BoolTensor
torch.cuda.BoolStorage = torch.xpu.BoolStorage
torch.cuda.ComplexFloatStorage = torch.xpu.ComplexFloatStorage
torch.cuda.ComplexDoubleStorage = torch.xpu.ComplexDoubleStorage
if not legacy or float(ipex.__version__[:3]) >= 2.3:
torch.cuda._initialization_lock = torch.xpu._initialization_lock
torch.cuda._initialized = torch.xpu._initialized
torch.cuda._is_in_bad_fork = torch.xpu._is_in_bad_fork
torch.cuda._lazy_seed_tracker = torch.xpu._lazy_seed_tracker
torch.cuda._queued_calls = torch.xpu._queued_calls
torch.cuda._tls = torch.xpu._tls
torch.cuda.threading = torch.xpu.threading
torch.cuda.traceback = torch.xpu.traceback
# Memory:
if 'linux' in sys.platform and "WSL2" in os.popen("uname -a").read():
torch.xpu.empty_cache = lambda: None
torch.cuda.empty_cache = torch.xpu.empty_cache
if legacy:
torch.cuda.memory_summary = torch.xpu.memory_summary
torch.cuda.memory_snapshot = torch.xpu.memory_snapshot
torch.cuda.memory = torch.xpu.memory
torch.cuda.memory_stats = torch.xpu.memory_stats
torch.cuda.memory_allocated = torch.xpu.memory_allocated
torch.cuda.max_memory_allocated = torch.xpu.max_memory_allocated
torch.cuda.memory_reserved = torch.xpu.memory_reserved
torch.cuda.memory_cached = torch.xpu.memory_reserved
torch.cuda.max_memory_reserved = torch.xpu.max_memory_reserved
torch.cuda.max_memory_cached = torch.xpu.max_memory_reserved
torch.cuda.reset_peak_memory_stats = torch.xpu.reset_peak_memory_stats
torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats
torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats
torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict
torch.cuda.reset_accumulated_memory_stats = torch.xpu.reset_accumulated_memory_stats
# RNG:
torch.cuda.get_rng_state = torch.xpu.get_rng_state
torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all
torch.cuda.set_rng_state = torch.xpu.set_rng_state
torch.cuda.set_rng_state_all = torch.xpu.set_rng_state_all
torch.cuda.manual_seed = torch.xpu.manual_seed
torch.cuda.manual_seed_all = torch.xpu.manual_seed_all
torch.cuda.seed = torch.xpu.seed
torch.cuda.seed_all = torch.xpu.seed_all
torch.cuda.initial_seed = torch.xpu.initial_seed
# AMP:
if legacy:
torch.xpu.amp.custom_fwd = torch.cuda.amp.custom_fwd
torch.xpu.amp.custom_bwd = torch.cuda.amp.custom_bwd
torch.cuda.amp = torch.xpu.amp
if float(ipex.__version__[:3]) < 2.3:
torch.is_autocast_enabled = torch.xpu.is_autocast_xpu_enabled
torch.get_autocast_gpu_dtype = torch.xpu.get_autocast_xpu_dtype
if not hasattr(torch.cuda.amp, "common"):
torch.cuda.amp.common = contextlib.nullcontext()
torch.cuda.amp.common.amp_definitely_not_available = lambda: False
try:
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught
try:
from .gradscaler import gradscaler_init # pylint: disable=import-outside-toplevel, import-error
gradscaler_init()
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
# C
if legacy and float(ipex.__version__[:3]) < 2.3:
torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentRawStream
ipex._C._DeviceProperties.multi_processor_count = ipex._C._DeviceProperties.gpu_subslice_count
ipex._C._DeviceProperties.major = 12
ipex._C._DeviceProperties.minor = 1
else:
torch._C._cuda_getCurrentRawStream = torch._C._xpu_getCurrentRawStream
torch._C._XpuDeviceProperties.multi_processor_count = torch._C._XpuDeviceProperties.gpu_subslice_count
torch._C._XpuDeviceProperties.major = 12
torch._C._XpuDeviceProperties.minor = 1
# Fix functions with ipex:
torch.xpu.mem_get_info = lambda device=None: [(torch.xpu.get_device_properties(device).total_memory - torch.xpu.memory_reserved(device)), torch.xpu.get_device_properties(device).total_memory]
torch.cuda.mem_get_info = torch.xpu.mem_get_info
torch._utils._get_available_device_type = lambda: "xpu"
torch.has_cuda = True
torch.cuda.has_half = True
torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
torch.backends.cuda.is_built = lambda *args, **kwargs: True
torch.version.cuda = "12.1"
torch.cuda.get_arch_list = lambda: ["ats-m150", "pvc"]
torch.cuda.get_device_capability = lambda *args, **kwargs: (12,1)
torch.cuda.get_device_properties.major = 12
torch.cuda.get_device_properties.minor = 1
torch.cuda.ipc_collect = lambda *args, **kwargs: None
torch.cuda.utilization = lambda *args, **kwargs: 0
device_supports_fp64, can_allocate_plus_4gb = ipex_hijacks(legacy=legacy)
try:
from .diffusers import ipex_diffusers
ipex_diffusers(device_supports_fp64=device_supports_fp64, can_allocate_plus_4gb=can_allocate_plus_4gb)
except Exception: # pylint: disable=broad-exception-caught
pass
torch.cuda.is_xpu_hijacked = True
except Exception as e:
return False, e
return True, None