这篇教程介绍了如何进行回归测试。部署配置文件由每个codebase的回归配置文件
,推理框架配置信息
组成。
本章节的内容,需要提前根据build 文档将 MMDeploy 安装配置好之后,才能进行。
需要安装 test 的环境
pip install -r requirements/tests.txt
如果在使用过程是 numpy 报错,则更新一下 numpy
pip install -U numpy
python ./tools/regression_test.py \
--codebase "${CODEBASE_NAME}" \
--backends "${BACKEND}" \
[--models "${MODELS}"] \
--work-dir "${WORK_DIR}" \
--device "${DEVICE}" \
--log-level INFO \
[--performance 或 -p] \
[--checkpoint-dir "$CHECKPOINT_DIR"]
--codebase
: 需要测试的 codebase,eg.mmdet
, 测试多个mmcls mmdet ...
--backends
: 筛选测试的后端, 默认测全部backend
, 也可传入若干个后端,例如onnxruntime tesnsorrt
。如果需要一同进行 SDK 的测试,需要在tests/regression/${codebase}.yml
里面的sdk_config
进行配置。--models
: 指定测试的模型, 默认测试yml
中所有模型, 也可传入若干个模型名称,模型名称可参考相关yml配置文件。例如ResNet SE-ResNet "Mask R-CNN"
。注意的是,可传入只有字母和数字组成模型名称,例如resnet seresnet maskrcnn
。--work-dir
: 模型转换、报告生成的路径,默认是../mmdeploy_regression_working_dir
,注意路径中不要含空格等特殊字符。--checkpoint-dir
: PyTorch 模型文件下载保存路径,默认是../mmdeploy_checkpoints
,注意路径中不要含空格等特殊字符。--device
: 使用的设备,默认cuda
。--log-level
: 设置日记的等级,选项包括'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'
。默认是INFO
。-p
或--performance
: 是否测试精度,加上则测试转换+精度,不加上则只测试转换
对于 Windows 用户:
- 要在 shell 命令中使用
&&
连接符,需要下载并使用PowerShell 7 Preview 5+
。 - 如果您使用 conda env,可能需要在 regression_test.py 中将
python3
更改为python
,因为%USERPROFILE%\AppData\Local\Microsoft\WindowsApps
目录中有python3.exe
。
- 测试 mmdet 和 mmpose 的所有 backend 的 转换+精度
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO \
--performance
- 测试 mmdet 和 mmpose 的某几个 backend 的 转换+精度
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--backends onnxruntime tensorrt \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO \
-p
- 测试 mmdet 和 mmpose 的某几个 backend,只测试转换
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--backends onnxruntime tensorrt \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO
- 测试 mmdet 和 mmcls 的某几个 models,只测试转换
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--models ResNet SE-ResNet "Mask R-CNN" \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO
globals:
codebase_dir: ../mmocr # 回归测试的 codebase 路径
checkpoint_force_download: False # 回归测试是否重新下载模型即使其已经存在
images: # 测试使用图片
img_densetext_det: &img_densetext_det ../mmocr/demo/demo_densetext_det.jpg
img_demo_text_det: &img_demo_text_det ../mmocr/demo/demo_text_det.jpg
img_demo_text_ocr: &img_demo_text_ocr ../mmocr/demo/demo_text_ocr.jpg
img_demo_text_recog: &img_demo_text_recog ../mmocr/demo/demo_text_recog.jpg
metric_info: &metric_info # 指标参数
hmean-iou: # 命名根据 metafile.Results.Metrics
eval_name: hmean-iou # 命名根据 test.py --metrics args 入参名称
metric_key: 0_hmean-iou:hmean # 命名根据 eval 写入 log 的 key name
tolerance: 0.1 # 容忍的阈值区间
task_name: Text Detection # 命名根据模型 metafile.Results.Task
dataset: ICDAR2015 #命名根据模型 metafile.Results.Dataset
word_acc: # 同上
eval_name: acc
metric_key: 0_word_acc_ignore_case
tolerance: 0.2
task_name: Text Recognition
dataset: IIIT5K
convert_image_det: &convert_image_det # det转换会使用到的图片
input_img: *img_densetext_det
test_img: *img_demo_text_det
convert_image_rec: &convert_image_rec
input_img: *img_demo_text_recog
test_img: *img_demo_text_recog
backend_test: &default_backend_test True # 是否对 backend 进行精度测试
sdk: # SDK 配置文件
sdk_detection_dynamic: &sdk_detection_dynamic configs/mmocr/text-detection/text-detection_sdk_dynamic.py
sdk_recognition_dynamic: &sdk_recognition_dynamic configs/mmocr/text-recognition/text-recognition_sdk_dynamic.py
onnxruntime:
pipeline_ort_recognition_static_fp32: &pipeline_ort_recognition_static_fp32
convert_image: *convert_image_rec # 转换过程中使用的图片
backend_test: *default_backend_test # 是否进行后端测试,存在则判断,不存在则视为 False
sdk_config: *sdk_recognition_dynamic # 是否进行SDK测试,存在则使用特定的 SDK config 进行测试,不存在则视为不进行 SDK 测试
deploy_config: configs/mmocr/text-recognition/text-recognition_onnxruntime_static.py # 使用的 deploy cfg 路径,基于 mmdeploy 的路径
pipeline_ort_recognition_dynamic_fp32: &pipeline_ort_recognition_dynamic_fp32
convert_image: *convert_image_rec
backend_test: *default_backend_test
sdk_config: *sdk_recognition_dynamic
deploy_config: configs/mmocr/text-recognition/text-recognition_onnxruntime_dynamic.py
pipeline_ort_detection_dynamic_fp32: &pipeline_ort_detection_dynamic_fp32
convert_image: *convert_image_det
deploy_config: configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py
tensorrt:
pipeline_trt_recognition_dynamic_fp16: &pipeline_trt_recognition_dynamic_fp16
convert_image: *convert_image_rec
backend_test: *default_backend_test
sdk_config: *sdk_recognition_dynamic
deploy_config: configs/mmocr/text-recognition/text-recognition_tensorrt-fp16_dynamic-1x32x32-1x32x640.py
pipeline_trt_detection_dynamic_fp16: &pipeline_trt_detection_dynamic_fp16
convert_image: *convert_image_det
backend_test: *default_backend_test
sdk_config: *sdk_detection_dynamic
deploy_config: configs/mmocr/text-detection/text-detection_tensorrt-fp16_dynamic-320x320-2240x2240.py
openvino:
# 此处省略,内容同上
ncnn:
# 此处省略,内容同上
pplnn:
# 此处省略,内容同上
torchscript:
# 此处省略,内容同上
models:
- name: crnn # 模型名称
metafile: configs/textrecog/crnn/metafile.yml # 模型对应的 metafile 的路径,相对于 codebase 的路径
codebase_model_config_dir: configs/textrecog/crnn # `model_configs` 的父文件夹路径,相对于 codebase 的路径
model_configs: # 需要测试的 config 名称
- crnn_academic_dataset.py
pipelines: # 使用的 pipeline
- *pipeline_ort_recognition_dynamic_fp32
- name: dbnet
metafile: configs/textdet/dbnet/metafile.yml
codebase_model_config_dir: configs/textdet/dbnet
model_configs:
- dbnet_r18_fpnc_1200e_icdar2015.py
pipelines:
- *pipeline_ort_detection_dynamic_fp32
- *pipeline_trt_detection_dynamic_fp16
# 特殊的 pipeline 可以这样加入
- convert_image: xxx
backend_test: xxx
sdk_config: xxx
deploy_config: configs/mmocr/text-detection/xxx
Model | Model Config | Task | Checkpoint | Dataset | Backend | Deploy Config | Static or Dynamic | Precision Type | Conversion Result | metric_1 | metric_2 | metric_n | Test Pass | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
序号 | 模型名称 | model config 路径 | 执行的 task name | .pth 模型路径 |
数据集名称 | 后端名称 | deploy cfg 路径 | 动态 or 静态 | 测试精度 | 模型转换结果 | 指标 1 数值 | 指标 2 数值 | 指标 n 数值 | 后端测试结果 |
这是 MMOCR 生成的报告
Model | Model Config | Task | Checkpoint | Dataset | Backend | Deploy Config | Static or Dynamic | Precision Type | Conversion Result | hmean-iou | word_acc | Test Pass | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ../mmdeploy_checkpoints/mmocr/crnn/crnn_academic-a723a1c5.pth | IIIT5K | Pytorch | - | - | - | - | - | 80.5 | - |
1 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ${WORK_DIR}/mmocr/crnn/onnxruntime/static/crnn_academic-a723a1c5/end2end.onnx | x | onnxruntime | configs/mmocr/text-recognition/text-recognition_onnxruntime_dynamic.py | static | fp32 | True | - | 80.67 | True |
2 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ${WORK_DIR}/mmocr/crnn/onnxruntime/static/crnn_academic-a723a1c5 | x | SDK-onnxruntime | configs/mmocr/text-recognition/text-recognition_sdk_dynamic.py | static | fp32 | True | - | x | False |
3 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ../mmdeploy_checkpoints/mmocr/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth | ICDAR2015 | Pytorch | - | - | - | - | 0.795 | - | - |
4 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ../mmdeploy_checkpoints/mmocr/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth | ICDAR | onnxruntime | configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py | dynamic | fp32 | True | - | - | True |
5 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ${WORK_DIR}/mmocr/dbnet/tensorrt/dynamic/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597/end2end.engine | ICDAR | tensorrt | configs/mmocr/text-detection/text-detection_tensorrt-fp16_dynamic-320x320-2240x2240.py | dynamic | fp16 | True | 0.793302 | - | True |
6 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ${WORK_DIR}/mmocr/dbnet/tensorrt/dynamic/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597 | ICDAR | SDK-tensorrt | configs/mmocr/text-detection/text-detection_sdk_dynamic.py | dynamic | fp16 | True | 0.795073 | - | True |
- ONNX Runtime
- TensorRT
- PPLNN
- ncnn
- OpenVINO
- TorchScript
- MMDeploy SDK
Codebase | Metric | Support |
---|---|---|
mmdet | bbox | ✔️ |
segm | ✔️ | |
PQ | ❌ | |
mmcls | accuracy | ✔️ |
mmseg | mIoU | ✔️ |
mmpose | AR | ✔️ |
AP | ✔️ | |
mmocr | hmean | ✔️ |
acc | ✔️ | |
mmedit | PSNR | ✔️ |
SSIM | ✔️ |
暂无
暂无