diff --git a/Evaluator/TA/ai_evaluator/ai.py b/Evaluator/TA/ai_evaluator/ai.py index 750c58351..93ebbeede 100644 --- a/Evaluator/TA/ai_evaluator/ai.py +++ b/Evaluator/TA/ai_evaluator/ai.py @@ -31,13 +31,15 @@ class GPTEvaluator(evaluators.TAEvaluator): + GLOBAL_VERSION = 1 PREPROMPT = "Predict: {up or down} {confidence%} (no other information)" PASSED_DATA_LEN = 10 + MAX_CONFIDENCE_PERCENT = 100 HIGH_CONFIDENCE_PERCENT = 80 MEDIUM_CONFIDENCE_PERCENT = 50 LOW_CONFIDENCE_PERCENT = 30 INDICATORS = { - "No indicator: the raw value of the selected source": lambda data, period: data, + "No indicator: raw candles price data": lambda data, period: data, "EMA: Exponential Moving Average": tulipy.ema, "SMA: Simple Moving Average": tulipy.sma, "Kaufman Adaptive Moving Average": tulipy.kama, @@ -45,7 +47,7 @@ class GPTEvaluator(evaluators.TAEvaluator): "RSI: Relative Strength Index": tulipy.rsi, "Detrended Price Oscillator": tulipy.dpo, } - SOURCES = ["Open", "High", "Low", "Close", "Volume"] + SOURCES = ["Open", "High", "Low", "Close", "Volume", "Full candle (For no indicator only)"] GPT_MODELS = [] def __init__(self, tentacles_setup_config): @@ -53,6 +55,7 @@ def __init__(self, tentacles_setup_config): self.indicator = None self.source = None self.period = None + self.min_confidence_threshold = 100 self.gpt_model = gpt_service.GPTService.DEFAULT_MODEL self.is_backtesting = False self.min_allowed_timeframe = os.getenv("MIN_GPT_TIMEFRAME", None) @@ -65,6 +68,7 @@ def __init__(self, tentacles_setup_config): except ValueError: self.logger.error(f"Invalid timeframe configuration: unknown timeframe: '{self.min_allowed_timeframe}'") self.allow_reevaluations = os_util.parse_boolean_environment_var("ALLOW_GPT_REEVALUATIONS", "True") + self.services_config = None def enable_reevaluation(self) -> bool: """ @@ -72,6 +76,13 @@ def enable_reevaluation(self) -> bool: """ return self.allow_reevaluations + @classmethod + def get_signals_history_type(cls): + """ + Override when this evaluator uses a specific type of signal history + """ + return commons_enums.SignalHistoryTypes.GPT + async def load_and_save_user_inputs(self, bot_id: str) -> dict: """ instance method API for user inputs @@ -98,7 +109,12 @@ def init_user_inputs(self, inputs: dict) -> None: self.period = self.UI.user_input( "period", enums.UserInputTypes.INT, self.period, inputs, min_val=1, - title="Period: length of the indicator period." + title="Period: length of the indicator period or the number of candles to give to ChatGPT." + ) + self.min_confidence_threshold = self.UI.user_input( + "min_confidence_threshold", enums.UserInputTypes.INT, + self.min_confidence_threshold, inputs, min_val=0, max_val=100, + title="Minimum confidence threshold: % confidence value starting from which to return 1 or -1." ) if len(self.GPT_MODELS) > 1 and self.enable_model_selector: self.gpt_model = self.UI.user_input( @@ -112,7 +128,9 @@ async def _init_GPT_models(self): self.GPT_MODELS = [gpt_service.GPTService.DEFAULT_MODEL] if self.enable_model_selector and not self.is_backtesting: try: - service = await services_api.get_service(gpt_service.GPTService, self.is_backtesting) + service = await services_api.get_service( + gpt_service.GPTService, self.is_backtesting, self.services_config + ) self.GPT_MODELS = service.models except Exception as err: self.logger.exception(err, True, f"Impossible to fetch GPT models: {err}") @@ -128,67 +146,110 @@ async def _init_registered_topics(self, all_symbols_by_crypto_currencies, curren async def ohlcv_callback(self, exchange: str, exchange_id: str, cryptocurrency: str, symbol: str, time_frame, candle, inc_in_construction_data): - candle_data = self.get_candles_data_api()( - self.get_exchange_symbol_data(exchange, exchange_id, symbol), time_frame, - include_in_construction=inc_in_construction_data - ) + candle_data = self.get_candles_data(exchange, exchange_id, symbol, time_frame, inc_in_construction_data) await self.evaluate(cryptocurrency, symbol, time_frame, candle_data, candle) async def evaluate(self, cryptocurrency, symbol, time_frame, candle_data, candle): - self.eval_note = commons_constants.START_PENDING_EVAL_NOTE - if self._check_timeframe(time_frame): - try: - computed_data = self.call_indicator(candle_data) - reduced_data = computed_data[-self.PASSED_DATA_LEN:] - formatted_data = ", ".join(str(datum).replace('[', '').replace(']', '') for datum in reduced_data) - prediction = await self.ask_gpt(self.PREPROMPT, formatted_data, symbol, time_frame) - cleaned_prediction = prediction.strip().replace("\n", "").replace(".", "").lower() - prediction_side = self._parse_prediction_side(cleaned_prediction) - if prediction_side == 0: - self.logger.error(f"Error when reading GPT answer: {cleaned_prediction}") - return - confidence = self._parse_confidence(cleaned_prediction) / 100 - self.eval_note = prediction_side * confidence - except services_errors.InvalidRequestError as e: - self.logger.error(f"Invalid GPT request: {e}") - except services_errors.RateLimitError as e: - self.logger.error(f"Too many requests: {e}") - except services_errors.UnavailableInBacktestingError: - # error already logged error for backtesting in use_backtesting_init_timeout - pass - except evaluators_errors.UnavailableEvaluatorError as e: - self.logger.exception(e, True, f"Evaluation error: {e}") - except tulipy.lib.InvalidOptionError as e: - self.logger.warning( - f"Error when computing {self.indicator} on {self.period} period with {len(candle_data)} " - f"candles: {e}" - ) - self.logger.exception(e, False) - else: - self.logger.debug(f"Ignored {time_frame} time frame as the shorted allowed time frame is " - f"{self.min_allowed_timeframe}") - await self.evaluation_completed(cryptocurrency, symbol, time_frame, - eval_time=evaluators_util.get_eval_time(full_candle=candle, - time_frame=time_frame)) + async with self.async_evaluation(): + self.eval_note = commons_constants.START_PENDING_EVAL_NOTE + if self._check_timeframe(time_frame): + try: + candle_time = candle[commons_enums.PriceIndexes.IND_PRICE_TIME.value] + computed_data = self.call_indicator(candle_data) + formatted_data = self.get_formatted_data(computed_data) + prediction = await self.ask_gpt(self.PREPROMPT, formatted_data, symbol, time_frame, candle_time) + cleaned_prediction = prediction.strip().replace("\n", "").replace(".", "").lower() + prediction_side = self._parse_prediction_side(cleaned_prediction) + if prediction_side == 0 and not self.is_backtesting: + self.logger.error(f"Error when reading GPT answer: {cleaned_prediction}") + return + confidence = self._parse_confidence(cleaned_prediction) / 100 + self.eval_note = prediction_side * confidence + except services_errors.InvalidRequestError as e: + self.logger.error(f"Invalid GPT request: {e}") + except services_errors.RateLimitError as e: + self.logger.error(f"Too many requests: {e}") + except services_errors.UnavailableInBacktestingError: + # error already logged error for backtesting in use_backtesting_init_timeout + pass + except evaluators_errors.UnavailableEvaluatorError as e: + self.logger.exception(e, True, f"Evaluation error: {e}") + except tulipy.lib.InvalidOptionError as e: + self.logger.warning( + f"Error when computing {self.indicator} on {self.period} period with {len(candle_data)} " + f"candles: {e}" + ) + self.logger.exception(e, False) + else: + self.logger.debug(f"Ignored {time_frame} time frame as the shorted allowed time frame is " + f"{self.min_allowed_timeframe}") + await self.evaluation_completed(cryptocurrency, symbol, time_frame, + eval_time=evaluators_util.get_eval_time(full_candle=candle, + time_frame=time_frame)) + + def get_formatted_data(self, computed_data) -> str: + if self.source in self.get_unformated_sources(): + return str(computed_data) + reduced_data = computed_data[-self.PASSED_DATA_LEN:] + return ", ".join(str(datum).replace('[', '').replace(']', '') for datum in reduced_data) - async def ask_gpt(self, preprompt, inputs, symbol, time_frame) -> str: + async def ask_gpt(self, preprompt, inputs, symbol, time_frame, candle_time) -> str: try: - service = await services_api.get_service(gpt_service.GPTService, self.is_backtesting) + service = await services_api.get_service( + gpt_service.GPTService, + self.is_backtesting, + {} if self.is_backtesting else self.services_config + ) resp = await service.get_chat_completion( [ service.create_message("system", preprompt), service.create_message("user", inputs), ], - model=self.gpt_model if self.enable_model_selector else None + model=self.gpt_model if self.enable_model_selector else None, + exchange=self.exchange_name, + symbol=symbol, + time_frame=time_frame, + version=self.get_version(), + candle_open_time=candle_time, + use_stored_signals=self.is_backtesting ) self.logger.info(f"GPT's answer is '{resp}' for {symbol} on {time_frame} with input: {inputs}") return resp except services_errors.CreationError as err: raise evaluators_errors.UnavailableEvaluatorError(f"Impossible to get ChatGPT prediction: {err}") from err + def get_version(self): + # later on, identify by its specs + # return f"{self.gpt_model}-{self.source}-{self.indicator}-{self.period}-{self.GLOBAL_VERSION}" + return "0.0.0" + def call_indicator(self, candle_data): + if self.source in self.get_unformated_sources(): + return candle_data return data_util.drop_nan(self.INDICATORS[self.indicator](candle_data, self.period)) + def get_candles_data(self, exchange, exchange_id, symbol, time_frame, inc_in_construction_data): + if self.source in self.get_unformated_sources(): + limit = self.period if inc_in_construction_data else self.period + 1 + full_candles = trading_api.get_candles_as_list( + trading_api.get_symbol_historical_candles( + self.get_exchange_symbol_data(exchange, exchange_id, symbol), time_frame, limit=limit + ) + ) + # remove time value + for candle in full_candles: + candle.pop(commons_enums.PriceIndexes.IND_PRICE_TIME.value) + if inc_in_construction_data: + return full_candles + return full_candles[:-1] + return self.get_candles_data_api()( + self.get_exchange_symbol_data(exchange, exchange_id, symbol), time_frame, + include_in_construction=inc_in_construction_data + ) + + def get_unformated_sources(self): + return (self.SOURCES[5], ) + def get_candles_data_api(self): return { self.SOURCES[0]: trading_api.get_symbol_open_candles, @@ -216,14 +277,20 @@ def _parse_confidence(self, cleaned_prediction): up with 70% confidence up with high confidence """ + value = self.LOW_CONFIDENCE_PERCENT if "%" in cleaned_prediction: percent_index = cleaned_prediction.index("%") - return float(cleaned_prediction[:percent_index].split(" ")[-1]) - if "high" in cleaned_prediction: - return self.HIGH_CONFIDENCE_PERCENT - if "medium" in cleaned_prediction or "intermediate" in cleaned_prediction: - return self.MEDIUM_CONFIDENCE_PERCENT - if "low" in cleaned_prediction: - return self.LOW_CONFIDENCE_PERCENT - self.logger.warning(f"Impossible to parse confidence in {cleaned_prediction}. Using low confidence") - return self.LOW_CONFIDENCE_PERCENT + value = float(cleaned_prediction[:percent_index].split(" ")[-1]) + elif "high" in cleaned_prediction: + value = self.HIGH_CONFIDENCE_PERCENT + elif "medium" in cleaned_prediction or "intermediate" in cleaned_prediction: + value = self.MEDIUM_CONFIDENCE_PERCENT + elif "low" in cleaned_prediction: + value = self.LOW_CONFIDENCE_PERCENT + elif not cleaned_prediction: + value = 0 + else: + self.logger.warning(f"Impossible to parse confidence in {cleaned_prediction}. Using low confidence") + if value >= self.min_confidence_threshold: + return self.MAX_CONFIDENCE_PERCENT + return value diff --git a/Evaluator/TA/ai_evaluator/resources/GPTEvaluator.md b/Evaluator/TA/ai_evaluator/resources/GPTEvaluator.md index 998a41680..6ad1523c4 100644 --- a/Evaluator/TA/ai_evaluator/resources/GPTEvaluator.md +++ b/Evaluator/TA/ai_evaluator/resources/GPTEvaluator.md @@ -1,5 +1,7 @@ Uses [Chat GPT](https://chat.openai.com/) to predict the next moves of the market. -Evaluates between -1 to 1 according to chat GPT's prediction of the selected data and its confidence. +Evaluates between -1 to 1 according to ChatGPT's prediction of the selected data and its confidence. -*This evaluator can't be used in backtesting.* +Note: this evaluator can only be used in backtesting for markets where historical ChatGPT data are available. + +Find the full list of supported historical markets on https://www.octobot.cloud/features/chatgpt-trading diff --git a/Evaluator/TA/ai_evaluator/tests/test_ai.py b/Evaluator/TA/ai_evaluator/tests/test_ai.py index cf644546c..145573cce 100644 --- a/Evaluator/TA/ai_evaluator/tests/test_ai.py +++ b/Evaluator/TA/ai_evaluator/tests/test_ai.py @@ -37,7 +37,8 @@ def test_indicators(GPT_evaluator): def test_get_candles_data_api(GPT_evaluator): for source in GPT_evaluator.SOURCES: GPT_evaluator.source = source - assert isinstance(GPT_evaluator.get_candles_data_api(), types.FunctionType) + if GPT_evaluator.source not in GPT_evaluator.get_unformated_sources(): + assert isinstance(GPT_evaluator.get_candles_data_api(), types.FunctionType) def test_parse_prediction_side(GPT_evaluator): @@ -57,3 +58,7 @@ def test_parse_confidence(GPT_evaluator): assert GPT_evaluator._parse_confidence("up 54.33%") == 54.33 assert GPT_evaluator._parse_confidence("down 70% confidence blablabla") == 70 assert GPT_evaluator._parse_confidence("Prediction: down 70%") == 70 + GPT_evaluator.min_confidence_threshold = 60 + assert GPT_evaluator._parse_confidence("up 70%") == 100 + assert GPT_evaluator._parse_confidence("up 60%") == 100 + assert GPT_evaluator._parse_confidence("up 59%") == 59 diff --git a/Meta/Keywords/scripting_library/UI/plots/displayed_elements.py b/Meta/Keywords/scripting_library/UI/plots/displayed_elements.py index cef8c3980..6bd2d8d00 100644 --- a/Meta/Keywords/scripting_library/UI/plots/displayed_elements.py +++ b/Meta/Keywords/scripting_library/UI/plots/displayed_elements.py @@ -39,8 +39,7 @@ class DisplayedElements(display.DisplayTranslator): } async def fill_from_database(self, trading_mode, database_manager, exchange_name, symbol, time_frame, exchange_id, - with_inputs=True): - + with_inputs=True, symbols=None, time_frames=None): async with databases.MetaDatabase.database(database_manager) as meta_db: graphs_by_parts = {} inputs = [] @@ -52,6 +51,10 @@ async def fill_from_database(self, trading_mode, database_manager, exchange_name run_db = meta_db.get_run_db() metadata_rows = await run_db.all(commons_enums.DBTables.METADATA.value) metadata = metadata_rows[0] if metadata_rows else None + if symbols is not None: + symbols.extend(metadata[commons_enums.BacktestingMetadata.SYMBOLS.value]) + if time_frames is not None: + time_frames.extend(metadata[commons_enums.BacktestingMetadata.TIME_FRAMES.value]) account_type = trading_api.get_account_type_from_run_metadata(metadata) \ if database_manager.is_backtesting() \ else trading_api.get_account_type_from_exchange_manager( diff --git a/Meta/Keywords/scripting_library/tests/exchanges/__init__.py b/Meta/Keywords/scripting_library/tests/exchanges/__init__.py index 8f63aa0a6..1cd00bbf3 100644 --- a/Meta/Keywords/scripting_library/tests/exchanges/__init__.py +++ b/Meta/Keywords/scripting_library/tests/exchanges/__init__.py @@ -36,7 +36,7 @@ async def fake_backtesting(backtesting_config): config=backtesting_config, exchange_ids=[], matrix_id="", - backtesting_files=[] + backtesting_files=[], ) diff --git a/Services/Interfaces/web_interface/controllers/configuration.py b/Services/Interfaces/web_interface/controllers/configuration.py index 33af7c51e..68e644770 100644 --- a/Services/Interfaces/web_interface/controllers/configuration.py +++ b/Services/Interfaces/web_interface/controllers/configuration.py @@ -110,9 +110,8 @@ def profiles_management(action): return util.get_rest_reply(flask.jsonify(data)) if action == "duplicate": profile_id = flask.request.args.get("profile_id") - new_profile = models.duplicate_profile(profile_id) - models.select_profile(new_profile.profile_id) - flask.flash(f"New profile successfully created and selected.", "success") + models.duplicate_profile(profile_id) + flask.flash(f"New profile successfully created.", "success") return util.get_rest_reply(flask.jsonify("Profile created")) if action == "use_as_live": profile_id = flask.request.args.get("profile_id") diff --git a/Services/Services_bases/gpt_service/gpt.py b/Services/Services_bases/gpt_service/gpt.py index 02549b29b..9c0975832 100644 --- a/Services/Services_bases/gpt_service/gpt.py +++ b/Services/Services_bases/gpt_service/gpt.py @@ -13,6 +13,7 @@ # # You should have received a copy of the GNU Lesser General Public # License along with this library. +import asyncio import os import openai import logging @@ -21,10 +22,19 @@ import octobot_services.constants as services_constants import octobot_services.services as services import octobot_services.errors as errors + +import octobot_commons.enums as commons_enums +import octobot_commons.constants as commons_constants +import octobot_commons.time_frame_manager as time_frame_manager +import octobot_commons.authentication as authentication +import octobot_commons.tree as tree + import octobot.constants as constants +import octobot.community as community class GPTService(services.AbstractService): + BACKTESTING_ENABLED = True DEFAULT_MODEL = "gpt-3.5-turbo" def get_fields_description(self): @@ -46,6 +56,7 @@ def __init__(self): logging.getLogger("openai").setLevel(logging.WARNING) self._env_secret_key = os.getenv(services_constants.ENV_OPENAI_SECRET_KEY, None) self.model = os.getenv(services_constants.ENV_GPT_MODEL, self.DEFAULT_MODEL) + self.stored_signals: tree.BaseTree = tree.BaseTree() self.models = [] self.daily_tokens_limit = int(os.getenv(services_constants.ENV_GPT_DAILY_TOKENS_LIMIT, 0)) self.consumed_daily_tokens = 1 @@ -63,6 +74,27 @@ async def get_chat_completion( n=1, stop=None, temperature=0.5, + exchange: str = None, + symbol: str = None, + time_frame: str = None, + version: str = None, + candle_open_time: float = None, + use_stored_signals: bool = False, + ) -> str: + if use_stored_signals: + return self._get_signal_from_stored_signals(exchange, symbol, time_frame, version, candle_open_time) + if self.use_stored_signals_only(): + return await self._fetch_signal_from_stored_signals(exchange, symbol, time_frame, version, candle_open_time) + return await self._get_signal_from_gpt(messages, model, max_tokens, n, stop, temperature) + + async def _get_signal_from_gpt( + self, + messages, + model=None, + max_tokens=3000, + n=1, + stop=None, + temperature=0.5 ): self._ensure_rate_limit() try: @@ -87,6 +119,116 @@ async def get_chat_completion( f"Unexpected error when running request with model {model}: {err}" ) from err + def _get_signal_from_stored_signals( + self, + exchange: str, + symbol: str, + time_frame: str, + version: str, + candle_open_time: float, + ): + try: + return self.stored_signals.get_node([exchange, symbol, time_frame, version, candle_open_time]).node_value + except tree.NodeExistsError: + return "" + + async def _fetch_signal_from_stored_signals( + self, + exchange: str, + symbol: str, + time_frame: str, + version: str, + candle_open_time: float, + ) -> str: + authenticator = authentication.Authenticator.instance() + try: + return await authenticator.get_gpt_signal( + exchange, symbol, commons_enums.TimeFrames(time_frame), candle_open_time, version + ) + except Exception as err: + self.logger.exception(err, True, f"Error when fetching gpt signal: {err}") + + def store_signal_history( + self, + exchange: str, + symbol: str, + time_frame: commons_enums.TimeFrames, + version: str, + signals_by_candle_open_time, + ): + tf = time_frame.value + for candle_open_time, signal in signals_by_candle_open_time.items(): + self.stored_signals.set_node_at_path( + signal, + str, + [exchange, symbol, tf, version, candle_open_time] + ) + + def has_signal_history( + self, + exchange: str, + symbol: str, + time_frame: commons_enums.TimeFrames, + min_timestamp: float, + max_timestamp: float, + version: str + ): + for ts in (min_timestamp, max_timestamp): + if self._get_signal_from_stored_signals( + exchange, symbol, time_frame.value, version, time_frame_manager.get_last_timeframe_time(time_frame, ts) + ) == "": + return False + return True + + async def _fetch_and_store_history( + self, authenticator, exchange_name, symbol, time_frame, version, min_timestamp: float, max_timestamp: float + ): + signals_by_candle_open_time = await authenticator.get_gpt_signals_history( + exchange_name, symbol, time_frame, + time_frame_manager.get_last_timeframe_time(time_frame, min_timestamp), + time_frame_manager.get_last_timeframe_time(time_frame, max_timestamp), + version + ) + if signals_by_candle_open_time: + self.logger.info( + f"Fetched {len(signals_by_candle_open_time)} ChatGPT signals " + f"history for {symbol} {time_frame} on {exchange_name}." + ) + else: + self.logger.error( + f"No ChatGPT signal history for {symbol} on {time_frame.value} for {exchange_name} with {version}. " + f"Please check {self._supported_history_url()} to get the list of supported signals history." + ) + self.store_signal_history( + exchange_name, symbol, time_frame, version, signals_by_candle_open_time + ) + + @staticmethod + def is_setup_correctly(config): + return True + + async def fetch_gpt_history( + self, exchange_name: str, symbols: list, time_frames: list, + version: str, start_timestamp: float, end_timestamp: float + ): + authenticator = authentication.Authenticator.instance() + coros = [ + self._fetch_and_store_history( + authenticator, exchange_name, symbol, time_frame, version, start_timestamp, end_timestamp + ) + for symbol in symbols + for time_frame in time_frames + if not self.has_signal_history(exchange_name, symbol, time_frame, start_timestamp, end_timestamp, version) + ] + if coros: + await asyncio.gather(*coros) + + def clear_signal_history(self): + self.stored_signals.clear() + + def _supported_history_url(self): + return f"{community.IdentifiersProvider.COMMUNITY_LANDING_URL}/features/chatgpt-trading" + def _ensure_rate_limit(self): if self.last_consumed_token_date != datetime.date.today(): self.consumed_daily_tokens = 0 @@ -101,7 +243,7 @@ def _update_token_usage(self, consumed_tokens): self.logger.debug(f"Consumed {consumed_tokens} tokens. {self.consumed_daily_tokens} consumed tokens today.") def check_required_config(self, config): - if self._env_secret_key is not None: + if self._env_secret_key is not None or self.use_stored_signals_only(): return True try: return bool(config[services_constants.CONIG_OPENAI_SECRET_KEY]) @@ -110,6 +252,8 @@ def check_required_config(self, config): def has_required_configuration(self): try: + if self.use_stored_signals_only(): + return True return self.check_required_config( self.config[services_constants.CONFIG_CATEGORY_SERVICES].get(services_constants.CONFIG_GPT, {}) ) @@ -140,6 +284,9 @@ def _get_api_key(self): async def prepare(self) -> None: try: + if self.use_stored_signals_only(): + self.logger.info(f"Skipping models fetch as self.use_stored_signals_only() is True") + return fetched_models = await openai.Model.alist(api_key=self._get_api_key()) self.models = [d["id"] for d in fetched_models["data"]] if self.model not in self.models: @@ -151,11 +298,15 @@ async def prepare(self) -> None: self.logger.error(f"Unexpected error when checking api key: {err}") def _is_healthy(self): - return self._get_api_key() and self.models + return self.use_stored_signals_only() or (self._get_api_key() and self.models) def get_successful_startup_message(self): - return f"GPT configured and ready. {len(self.models)} AI models are available. Using {self.model}.", \ + return f"GPT configured and ready. {len(self.models)} AI models are available. " \ + f"Using {'stored signals' if self.use_stored_signals_only() else self.models}.", \ self._is_healthy() + def use_stored_signals_only(self): + return not self.config + async def stop(self): pass