-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathyolo.py
285 lines (250 loc) · 12.6 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#-------------------------------------#
# 创建YOLO类
#-------------------------------------#
import colorsys
import os
import time
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from PIL import Image, ImageDraw, ImageFont
from torch.autograd import Variable
from nets.yolo4 import YoloBody
from utils.utils import (DecodeBox, bbox_iou, letterbox_image,
non_max_suppression, yolo_correct_boxes)
#--------------------------------------------#
# 使用自己训练好的模型预测需要修改3个参数
# model_path、classes_path和backbone
# 都需要修改!
# 如果出现shape不匹配,一定要注意
# 训练时的model_path和classes_path参数的修改
#--------------------------------------------#
class YOLO(object):
_defaults = {
"model_path" : 'model_data/yolov4_mobile_mask.pth',
"anchors_path" : 'model_data/yolo_anchors.txt',
"classes_path" : 'model_data/voc_classes.txt',
"backbone" : 'mobilenetv3',
"model_image_size" : (608, 608, 3),
"confidence" : 0.5,
"iou" : 0.3,
"cuda" : True,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : True,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化YOLO
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.generate()
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
#---------------------------------------------------#
# 获得所有的先验框
#---------------------------------------------------#
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1, 3, 2])[::-1,:,:]
#---------------------------------------------------#
# 生成模型
#---------------------------------------------------#
def generate(self):
#---------------------------------------------------#
# 建立yolov4模型
#---------------------------------------------------#
self.net = YoloBody(len(self.anchors[0]),len(self.class_names),backbone=self.backbone).eval()
#---------------------------------------------------#
# 载入yolov4模型的权重
#---------------------------------------------------#
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(self.model_path, map_location=device)
self.net.load_state_dict(state_dict)
print('Finished!')
if self.cuda:
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
self.net = nn.DataParallel(self.net)
self.net = self.net.cuda()
#---------------------------------------------------#
# 建立三个特征层解码用的工具
#---------------------------------------------------#
self.yolo_decodes = []
for i in range(3):
self.yolo_decodes.append(DecodeBox(self.anchors[i], len(self.class_names), (self.model_image_size[1], self.model_image_size[0])))
print('{} model, anchors, and classes loaded.'.format(self.model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image):
image_shape = np.array(np.shape(image)[0:2])
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
#---------------------------------------------------------#
if self.letterbox_image:
crop_img = np.array(letterbox_image(image, (self.model_image_size[1],self.model_image_size[0])))
else:
crop_img = image.convert('RGB')
crop_img = crop_img.resize((self.model_image_size[1],self.model_image_size[0]), Image.BICUBIC)
photo = np.array(crop_img,dtype = np.float32) / 255.0
photo = np.transpose(photo, (2, 0, 1))
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
images = [photo]
with torch.no_grad():
images = torch.from_numpy(np.asarray(images))
if self.cuda:
images = images.cuda()
#---------------------------------------------------------#
# 将图像输入网络当中进行预测!
#---------------------------------------------------------#
outputs = self.net(images)
output_list = []
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
#---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
#---------------------------------------------------------#
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, len(self.class_names),
conf_thres=self.confidence,
nms_thres=self.iou)
#---------------------------------------------------------#
# 如果没有检测出物体,返回原图
#---------------------------------------------------------#
try:
batch_detections = batch_detections[0].cpu().numpy()
except:
predicted_class="none"#表示没有找到目标
return image,predicted_class
#---------------------------------------------------------#
# 对预测框进行得分筛选
#---------------------------------------------------------#
top_index = batch_detections[:,4] * batch_detections[:,5] > self.confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
#-----------------------------------------------------------------#
# 在图像传入网络预测前会进行letterbox_image给图像周围添加灰条
# 因此生成的top_bboxes是相对于有灰条的图像的
# 我们需要对其进行修改,去除灰条的部分。
#-----------------------------------------------------------------#
if self.letterbox_image:
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
else:
top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
thickness = max((np.shape(image)[0] + np.shape(image)[1]) // self.model_image_size[0], 1)
for i, c in enumerate(top_label):
predicted_class = self.class_names[c]
score = top_conf[i]
top, left, bottom, right = boxes[i]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label, top, left, bottom, right)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[self.class_names.index(predicted_class)])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[self.class_names.index(predicted_class)])
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
del draw
return image,predicted_class#返回图片和预测结果
def detect_video(video_path, output_path):
yolo = YOLO()
#-------------------------------------#
# 调用摄像头
# capture=cv2.VideoCapture("1.mp4")
#-------------------------------------#
capture=cv2.VideoCapture(video_path)
if not capture.isOpened():
raise IOError("请检查摄像头连接")
isOutput = True if output_path != "" else False
video_FourCC = int(capture.get(cv2.CAP_PROP_FOURCC)) # 视频编码
video_fps = capture.get(cv2.CAP_PROP_FPS) # 视频的帧率
video_size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))) # 视频的宽和高
if isOutput:
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) # 视频保存
fps = 0.0
while(True):
t1 = time.time()
# 读取某一帧
ret,frame=capture.read()
if ret == True:
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
# 转变成Image
frame = Image.fromarray(np.uint8(frame))
# 进行检测
frame = np.array(yolo.detect_image(frame))
# RGBtoBGR满足opencv显示格式
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)
fps = ( fps + (1./(time.time()-t1)) ) / 2
print("fps= %.2f"%(fps))
frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.namedWindow("Mask", cv2.WINDOW_NORMAL)
cv2.imshow("Mask",frame)
else:
capture.release()
out.release()
cv2.waitKey(0)
if isOutput:
out.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'): # 延时
break
cv2.destroyAllWindows()# 防止窗口无法关闭卡死