-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanguage_model.py
244 lines (209 loc) · 10.1 KB
/
language_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# coding: utf-8
import argparse
import json
import random
from torch.optim import SGD
from torch.optim.adamw import AdamW
from io_module import conllx_data
from io_module.logger import *
from io_module.utils import iterate_data
from model.LM import *
# from misc.sharp_detect import SharpDetector
from model.utils import nan_detection
from optim.lr_scheduler import ExponentialScheduler
from model.hmm2rnn import *
def evaluate(data, batch, model, device):
model.eval()
total_ppl = 0
word_cnt = 0
with torch.no_grad():
for batch_data in iterate_data(data, batch):
# sentences, labels, masks, revert_order = standardize_batch(data[i * batch: (i + 1) * batch])
words = batch_data['WORD'].to(device)
masks = batch_data['MASK'].to(device)
lengths = batch_data['LENGTH']
ppl = model(words, masks)
if torch.cuda.device_count() > 1:
ppl = ppl.mean()
total_ppl += ppl.item() * words.size(0)
word_cnt += torch.sum(lengths).item()
return total_ppl / word_cnt
def get_optimizer(parameters, optim, learning_rate, amsgrad, weight_decay, lr_decay, warmup_steps):
if optim == 'sgd':
optimizer = SGD(parameters, lr=learning_rate, momentum=0.9, weight_decay=weight_decay, nesterov=True)
else:
optimizer = AdamW(parameters, lr=learning_rate, betas=(0.9, 0.999), eps=1e-8, amsgrad=amsgrad,
weight_decay=weight_decay)
init_lr = 1e-7
scheduler = ExponentialScheduler(optimizer, lr_decay, warmup_steps, init_lr)
return optimizer, scheduler
def save_parameter_to_json(path, parameters):
with open(path + 'param.json', 'w') as f:
json.dump(parameters, f)
def main():
parser = argparse.ArgumentParser(description="HMM Language Model")
parser.add_argument(
'--data',
type=str,
default='./dataset/ptb/',
help='location of the data corpus')
parser.add_argument('--batch', type=int, default=16)
parser.add_argument('--optim', choices=['sgd', 'adam'], default='adam')
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_decay', type=float, default=0.999995, help='Decay rate of learning rate')
parser.add_argument('--amsgrad', action='store_true', help='AMD Grad')
parser.add_argument('--weight_decay', type=float, default=0.001, help='weight for l2 norm decay')
parser.add_argument('--warmup_steps', type=int, default=0, metavar='N',
help='number of steps to warm up (default: 0)')
parser.add_argument('--log_dir', type=str,
default='./output/' + datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S") + "/")
parser.add_argument('--dim', type=int, default=100)
parser.add_argument('--gpu', action='store_true')
parser.add_argument('--random_seed', type=int, default=10)
parser.add_argument('--unk_replace', type=float, default=0.0, help='The rate to replace a singleton word with UNK')
parser.add_argument('--model', choices=['HMM', 'HMM1', 'TBHMM', 'ABHMM', 'GBHMM', 'DBHMM',
'DTHMM', 'DEHMM', 'SNLHMM'], default='HMM1')
parser.add_argument('--symbolic_start', type=bool, default=False)
parser.add_argument('--symbolic_end', type=bool, default=False)
args = parser.parse_args()
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
random.seed(args.random_seed)
log_dir = args.log_dir
# setting optimizer
optim = args.optim
lr = args.lr
lr_decay = args.lr_decay
warmup_steps = args.warmup_steps
amsgrad = args.amsgrad
weight_decay = args.weight_decay
# data
root = args.data
unk_replace = args.unk_replace
s_start = args.symbolic_start
s_end = args.symbolic_end
# model
model_type = args.model
dim = args.dim
batch_size = args.batch
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# save parameter
save_parameter_to_json(log_dir, vars(args))
logger = get_logger('Sequence-Labeling')
change_handler(logger, log_dir)
# logger = LOGGER
logger.info(args)
device = torch.device('cuda') # if args.gpu else torch.device('cpu')
# Loading data
logger.info('Load PTB data....')
alphabet_path = os.path.join(root, 'alphabets')
train_path = os.path.join(root, 'train.conllu')
dev_path = os.path.join(root, 'dev.conllu')
test_path = os.path.join(root, 'test.conllu')
word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(alphabet_path, train_path,
data_paths=[dev_path, test_path],
embedd_dict=None,
max_vocabulary_size=100000,
min_occurrence=1,
unk_rank=0)
train_dataset = conllx_data.read_bucketed_data(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet,
symbolic_root=s_start, symbolic_end=s_end)
num_data = sum(train_dataset[1])
dev_dataset = conllx_data.read_data(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet,
symbolic_root=s_start, symbolic_end=s_end)
test_dataset = conllx_data.read_data(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet,
symbolic_root=s_start, symbolic_end=s_end)
logger.info("Word Alphabet Size: %d" % word_alphabet.size())
ntokens = word_alphabet.size()
if model_type == 'HMM':
model = HMMLanguageModel(vocab_size=ntokens, num_state=dim)
elif model_type == 'HMM1':
model = HMM(vocab_size=ntokens, num_state=dim)
elif model_type == 'TBHMM':
model = TBHMM(vocab_size=ntokens, num_state=dim)
elif model_type == 'ABHMM':
model = ABHMM(vocab_size=ntokens, num_state=dim)
elif model_type == 'DBHMM':
model = DBHMM(vocab_size=ntokens, num_state1=dim, num_state2=dim)
elif model_type == 'GBHMM':
model = GBHMM(vocab_size=ntokens, num_state=dim)
elif model_type == 'DTHMM':
model = DTHMM(vocab_size=ntokens, num_state=dim)
elif model_type == 'DEHMM':
model = DEHMM(vocab_size=ntokens, num_state=dim)
elif model_type == 'SNLHMM':
model = SNLHMM(vocab_size=ntokens, num_state=dim)
else:
raise ValueError('Error model type')
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
model.to(device)
logger.info('Building model ' + model.__class__.__name__ + '...')
parameters_need_update = filter(lambda p: p.requires_grad, model.parameters())
optimizer, scheduler = get_optimizer(parameters_need_update, optim, lr, amsgrad, weight_decay,
lr_decay=lr_decay, warmup_steps=warmup_steps)
# depend on dev ppl
best_epoch = (-1, 1e8, 0.0)
num_batches = num_data // batch_size + 1
def train(best_epoch, thread=6):
epoch = 0
while epoch <= thread:
epoch_loss = 0
num_back = 0
num_words = 0
num_insts = 0
model.train()
for step, data in enumerate(iterate_data(train_dataset, batch_size, bucketed=True, unk_replace=unk_replace, shuffle=True)):
# for j in tqdm(range(math.ceil(len(train_dataset) / batch_size))):
optimizer.zero_grad()
# samples = train_dataset[j * batch_size: (j + 1) * batch_size]
words, masks = data['WORD'].to(device), data['MASK'].to(device)
loss = model(words, masks)
if torch.cuda.device_count() > 1:
loss = loss.mean()
loss.backward()
optimizer.step()
scheduler.step()
epoch_loss += loss.item() * words.size(0)
num_words += torch.sum(masks).item()
num_insts += words.size()[0]
if step % 10 == 0:
torch.cuda.empty_cache()
sys.stdout.write("\b" * num_back)
sys.stdout.write(" " * num_back)
sys.stdout.write("\b" * num_back)
curr_lr = scheduler.get_lr()[0]
log_info = '[%d/%d (%.0f%%) lr=%.6f] loss: %.4f (%.4f)' % (
step, num_batches, 100. * step / num_batches,
curr_lr, epoch_loss / num_insts, epoch_loss / num_words)
sys.stdout.write(log_info)
sys.stdout.flush()
num_back = len(log_info)
logger.info('Epoch ' + str(epoch) + ' Loss: ' + str(round(epoch_loss / num_insts, 4)))
ppl = evaluate(dev_dataset, batch_size, model, device)
logger.info('\t Dev PPL: ' + str(round(ppl, 3)))
if best_epoch[1] > ppl:
test_ppl = evaluate(test_dataset, batch_size, model, device)
logger.info('\t Test PPL: ' + str(round(test_ppl, 3)))
best_epoch = (epoch, ppl, test_ppl)
patient = 0
else:
patient += 1
epoch += 1
if patient > 4:
print('reset optimizer momentums')
scheduler.reset_state()
patient = 0
logger.info("Best Epoch: " + str(best_epoch[0]) + " Dev ACC: " + str(round(best_epoch[1], 3)) +
"Test ACC: " + str(round(best_epoch[2], 3)))
return best_epoch
best_epoch = train(best_epoch, thread=35)
with open(log_dir + '/' + 'result.json', 'w') as f:
final_result = {"Epoch": best_epoch[0],
"Dev": best_epoch[1],
"Test": best_epoch[2]}
json.dump(final_result, f)
if __name__ == '__main__':
main()