-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence_labeling.py
282 lines (250 loc) · 13.2 KB
/
sequence_labeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# coding: utf-8
import argparse
import json
import math
import random
from typing import List
from torch.optim import SGD
from torch.optim.adamw import AdamW
from tqdm import tqdm
from io_module.data_loader import *
from io_module.logger import *
from model.sequence_labeling import *
from model.weighted_iohmm import WeightIOHMM
from optim.lr_scheduler import ExponentialScheduler
# out is [batch, max_len+2]
def standardize_batch(sample_list: List) -> (torch.Tensor, torch.Tensor):
max_len = max([len(sentence[0]) for sentence in sample_list])
standardized_sentence_list = []
standardized_label_list = []
revert_idx_list = []
mask_list = []
for sample in sample_list:
sentence, label = sample
standardized_sentence = sentence + [0] * (max_len - len(sentence))
standardized_label = label + [0] * (max_len - len(label))
mask = [1] * len(sentence) + [0] * (max_len - len(sentence))
revert_idx = [i for i in range(len(sentence) + 2)][::-1] + [i for i in range(len(sentence) + 2, max_len + 2)]
standardized_sentence_list.append(np.array(standardized_sentence))
standardized_label_list.append(np.array(standardized_label))
mask_list.append(np.array(mask))
revert_idx_list.append(np.array(revert_idx))
return torch.tensor(standardized_sentence_list).long(), torch.tensor(standardized_label_list).long(), \
torch.tensor(mask_list).long(), torch.tensor(revert_idx_list).long()
def get_optimizer(parameters, optim, learning_rate, amsgrad, weight_decay, lr_decay, warmup_steps):
if optim == 'sgd':
optimizer = SGD(parameters, lr=learning_rate, momentum=0.9, weight_decay=weight_decay, nesterov=True)
else:
optimizer = AdamW(parameters, lr=learning_rate, betas=(0.9, 0.999), eps=1e-8, amsgrad=amsgrad,
weight_decay=weight_decay)
init_lr = 1e-7
scheduler = ExponentialScheduler(optimizer, lr_decay, warmup_steps, init_lr)
return optimizer, scheduler
def evaluate(data, batch, model, device):
model.eval()
total_token_num = 0
corr_token_num = 0
total_pred = []
with torch.no_grad():
for i in range(math.ceil(len(data) / batch)):
sentences, labels, masks, revert_order = standardize_batch(data[i * batch: (i + 1) * batch])
corr, preds = model.get_acc(sentences.squeeze().to(device),
labels.squeeze().to(device),
masks.squeeze().to(device))
corr_token_num += corr
total_token_num += torch.sum(masks).item()
for pred in preds.tolist():
total_pred.append(pred)
return corr_token_num / total_token_num, total_pred
def save_parameter_to_json(path, parameters):
with open(path + 'param.json', 'w') as f:
json.dump(parameters, f)
def main():
parser = argparse.ArgumentParser(description="Gaussian Input Output HMM")
parser.add_argument(
'--data',
type=str,
default='./dataset/syntic_data_yong/0-1000-10-new',
help='location of the data corpus')
parser.add_argument('--batch', type=int, default=20)
parser.add_argument('--optim', choices=['sgd', 'adam'], default='adam')
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_decay', type=float, default=0.999995, help='Decay rate of learning rate')
parser.add_argument('--amsgrad', action='store_true', help='AMD Grad')
parser.add_argument('--weight_decay', type=float, default=0.0, help='weight for l2 norm decay')
parser.add_argument('--warmup_steps', type=int, default=0, metavar='N', help='number of steps to warm up (default: 0)')
parser.add_argument('--var_scale', type=float, default=1.0)
parser.add_argument('--log_dir', type=str,
default='./output/' + datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S") + "/")
parser.add_argument('--dim', type=int, default=5)
parser.add_argument('--gpu', action='store_true')
parser.add_argument('--random_seed', type=int, default=10)
parser.add_argument('--in_mu_drop', type=float, default=0.0)
parser.add_argument('--in_cho_drop', type=float, default=0.0)
parser.add_argument('--t_mu_drop', type=float, default=0.0)
parser.add_argument('--t_cho_drop', type=float, default=0.0)
parser.add_argument('--out_mu_drop', type=float, default=0.0)
parser.add_argument('--out_cho_drop', type=float, default=0.0)
parser.add_argument('--trans_cho_method', type=str, choices=['random', 'wishart'], default='random')
parser.add_argument('--input_cho_init', type=float, default=1.0,
help='init method of input cholesky matrix. 0 means random. The other score means constant')
parser.add_argument('--trans_cho_init', type=float, default=1.0,
help='init added scale of random version init_cho_init')
parser.add_argument('--output_cho_init', type=float, default=1.0,
help='init method of output cholesky matrix. 0 means random. The other score means constant')
# i_comp_num = 1, t_comp_num = 1, o_comp_num = 1, max_comp = 1,
parser.add_argument('--input_comp_num', type=int, default=1, help='input mixture gaussian component number')
parser.add_argument('--tran_comp_num', type=int, default=2, help='transition mixture gaussian component number')
parser.add_argument('--output_comp_num', type=int, default=1, help='output mixture gaussian component number')
parser.add_argument('--threshold', type=float, default=1.0,
help='pruning hyper-parameter, greater than 1 is max component, less than 1 is max value')
parser.add_argument('--tran_weight', type=float, default=0.0001)
parser.add_argument('--input_weight', type=float, default=0.0)
parser.add_argument('--output_weight', type=float, default=0.0)
parser.add_argument('--emission_cho_grad', type=bool, default=False)
parser.add_argument('--transition_cho_grad', type=bool, default=True)
parser.add_argument('--decode_cho_grad', type=bool, default=False)
parser.add_argument('--gaussian_decode', action='store_true')
args = parser.parse_args()
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
random.seed(args.random_seed)
log_dir = args.log_dir
batch_size = args.batch
# setting optimizer
batch_size = args.batch
optim = args.optim
lr = args.lr
lr_decay = args.lr_decay
warmup_steps = args.warmup_steps
amsgrad = args.amsgrad
weight_decay = args.weight_decay
root = args.data
in_mu_drop = args.in_mu_drop
in_cho_drop = args.in_cho_drop
t_mu_drop = args.t_mu_drop
t_cho_drop = args.t_cho_drop
out_mu_drop = args.out_mu_drop
out_cho_drop = args.out_cho_drop
tran_cho_method = args.trans_cho_method
input_cho_init = args.input_cho_init
trans_cho_init = args.trans_cho_init
output_cho_init = args.output_cho_init
input_num_comp = args.input_comp_num
tran_num_comp = args.tran_comp_num
output_num_comp = args.output_comp_num
threshold = args.threshold
normalize_weight = [args.tran_weight, args.input_weight, args.output_weight]
gaussian_decode = args.gaussian_decode
EMISSION_CHO_GRAD = args.emission_cho_grad
TRANSITION_CHO_GRAD = args.transition_cho_grad
DECODE_CHO_GRAD = args.decode_cho_grad
if not os.path.exists(log_dir):
os.makedirs(log_dir)
save_parameter_to_json(log_dir, vars(args))
# TODO ntokens generate from dataset
ntokens = 1000
nlabels = 5
# save parameter
logger = get_logger('Sequence-Labeling')
change_handler(logger, log_dir)
# logger = LOGGER
logger.info(args)
device = torch.device('cuda') if args.gpu else torch.device('cpu')
# Loading data
logger.info('Load data....')
train_dataset = read_sequence_labeling_data(root, type='train')
dev_dataset = read_sequence_labeling_data(root, type='dev')
test_dataset = read_sequence_labeling_data(root, type='test')
# build model
if threshold >= 1.0:
model = MixtureGaussianSequenceLabeling(dim=args.dim, ntokens=ntokens, nlabels=nlabels,
t_cho_method=tran_cho_method, t_cho_init=trans_cho_init,
in_cho_init=input_cho_init, out_cho_init=output_cho_init,
in_mu_drop=in_mu_drop, in_cho_drop=in_cho_drop,
t_mu_drop=t_mu_drop, t_cho_drop=t_cho_drop,
out_mu_drop=out_mu_drop, out_cho_drop=out_cho_drop,
i_comp_num=input_num_comp, t_comp_num=tran_num_comp,
o_comp_num=output_num_comp, max_comp=int(threshold),
gaussian_decode=gaussian_decode)
else:
model = ThresholdPruningMGSL(dim=args.dim, ntokens=ntokens, nlabels=nlabels,
t_cho_method=tran_cho_method, t_cho_init=trans_cho_init,
in_cho_init=input_cho_init, out_cho_init=output_cho_init,
in_mu_drop=in_mu_drop, in_cho_drop=in_cho_drop,
t_mu_drop=t_mu_drop, t_cho_drop=t_cho_drop,
out_mu_drop=out_mu_drop, out_cho_drop=out_cho_drop,
i_comp_num=input_num_comp, t_comp_num=tran_num_comp,
o_comp_num=output_num_comp, threshold=threshold,
gaussian_decode=gaussian_decode)
# model = RNNSequenceLabeling("RNN_TANH", ntokens=ntokens, nlabels=nlabels, ninp=10, nhid=10)
# model = WeightIOHMM(vocab_size=ntokens, nlabel=nlabels, num_state=args.dim)
model.to(device)
logger.info('Building model ' + model.__class__.__name__ + '...')
parameters_need_update = filter(lambda p: p.requires_grad, model.parameters())
optimizer, scheduler = get_optimizer(parameters_need_update, optim, lr, amsgrad, weight_decay,
lr_decay=lr_decay, warmup_steps=warmup_steps)
# depend on dev ppl
best_epoch = (-1, 0.0, 0.0)
# Default: util 6 epoch not update best_epoch
# If aim_epoch is not 0. It will train aim_epoch times.
def train(best_epoch, thread=6, aim_epoch=0):
epoch = best_epoch[0] + 1
while epoch - best_epoch[0] <= thread:
epoch_loss = 0
random.shuffle(train_dataset)
model.train()
optimizer.zero_grad()
for j in tqdm(range(math.ceil(len(train_dataset) / batch_size))):
samples = train_dataset[j * batch_size: (j + 1) * batch_size]
sentences, labels, masks, revert_order = standardize_batch(samples)
loss = 0
if threshold >= 1.0:
loss = model.get_loss(sentences, labels, masks, normalize_weight=normalize_weight)
else:
for i in range(batch_size):
loss += model.get_loss(sentences[i], labels[i], masks[i], normalize_weight=normalize_weight)
# loss = model.get_loss(sentences.to(device), labels.to(device), masks.to(device))
# loss = model.get_loss(sentences, labels, masks, normalize_weight=normalize_weight)
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
epoch_loss += (loss.item()) # * sentences.size(0)
logger.info('Epoch ' + str(epoch) + ' Loss: ' + str(round(epoch_loss / len(train_dataset), 4)))
if threshold >= 1.0:
acc, _ = evaluate(dev_dataset, batch_size, model, device)
else:
acc, _ = evaluate(dev_dataset, 1, model, device)
logger.info('\t Dev Acc: ' + str(round(acc * 100, 3)))
if best_epoch[1] < acc:
if threshold >= 1.0:
test_acc, _ = evaluate(test_dataset, batch_size, model, device)
else:
test_acc, _ = evaluate(test_dataset, 1, model, device)
logger.info('\t Test Acc: ' + str(round(test_acc * 100, 3)))
best_epoch = (epoch, acc, test_acc)
epoch += 1
if aim_epoch != 0 and epoch >= aim_epoch:
break
logger.info("Best Epoch: " + str(best_epoch[0]) + " Dev ACC: " + str(round(best_epoch[1] * 100, 3)) +
"Test ACC: " + str(round(best_epoch[2] * 100, 3)))
return best_epoch
# for parameter in model.parameters():
# # flip
# parameter.requires_grad = not parameter.requires_grad
best_epoch = train(best_epoch, thread=50)
# logger.info("After tunning var. Here we tunning mu")
#
# for parameter in model.parameters():
# # flip
# parameter.requires_grad = not parameter.requires_grad
#
# best_epoch = train(best_epoch)
with open(log_dir + '/' + 'result.json', 'w') as f:
final_result = {"Epoch": best_epoch[0],
"Dev": best_epoch[1] * 100,
"Test": best_epoch[2] * 100}
json.dump(final_result, f)
if __name__ == '__main__':
main()