This repository has been archived by the owner on Nov 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
93 lines (82 loc) · 3.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from nlp import Nlp
from voice_recognition import VoiceRecognition
import time
import csv
import random
import os
from dijkstra import Dijkstra
def buildDataset(cities):
size = len(cities)
dataset = open('dataset/dataset.csv')
csvreader = csv.reader(dataset, delimiter=';')
csv_escales = open('dataset/escales.csv')
escales = csv.reader(csv_escales, delimiter=';')
next(csvreader)
sentences = []
for row in csvreader:
sentence = row[0]
sentence_type = row[1]
for i in range(50):
city = cities[random.randrange(0, size, 1)]
destination = cities[random.randrange(0, size, 1)]
sentences.append([sentence.replace("first", city).replace("second", destination), sentence_type])
print(sentence)
for escale in escales:
new_sentence_type = sentence_type + '_by'
new_sentence = sentence + " " + escale[0]
print(new_sentence)
for j in range(50):
city = cities[random.randrange(0, size, 1)]
destination = cities[random.randrange(0, size, 1)]
escale_name = cities[random.randrange(0, size, 1)]
sentences.append(
[new_sentence.replace("first", city).replace("second", destination).replace("third", escale_name),
new_sentence_type])
csv_escales.close()
csv_escales = open('dataset/escales.csv')
escales = csv.reader(csv_escales, delimiter=';')
dataset.close()
with open("second_built_dataset.csv", 'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(["sentence", "sentence_type"])
csvwriter.writerows(sentences)
def main():
nlp_IA = Nlp()
stations = nlp_IA.get_station()
# buildDataset(stations)
voice = VoiceRecognition()
first, second = [], []
while (len(first) < 1 and len(second) < 1):
while not os.path.exists("command.txt"):
voice.call_me()
time.sleep(2)
first, second = nlp_IA.call_me()
print(first, second)
if (len(first) < 1 and len(second) < 1):
print("Less than 2 cities found, Please retry\n\n")
time.sleep(2)
if len(first) > 1:
print("\n\nThere is multiple possibilities for departure : ")
for i, elem in enumerate(first):
print(i + 1, " - ", elem)
source_index = int(input("Choose source of the travel : ")) - 1
source = first[source_index]
else:
source = first[0]
if len(second) > 1:
print("\n\nThere is multiple possibilities for destination : ")
for i, elem in enumerate(second):
print(i + 1, " - ", elem)
destination_index = int(input("Choose source of the travel : ")) - 1
destination = second[destination_index]
else:
destination = second[0]
file = open('dataset/timetables.csv')
csvreader = csv.reader(file, delimiter='\t')
pf = Dijkstra(stations, csvreader)
previous_nodes, shortest_path = pf.dijkstra_algorithm(graph=pf, start_node=source)
pf.print_result(previous_nodes, shortest_path, start_node=source, target_node=destination)
if os.path.exists("command.txt"):
os.remove("command.txt")
if __name__ == "__main__":
main()