-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpsnr_ssim.py
329 lines (269 loc) · 11.3 KB
/
psnr_ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import cv2
import numpy as np
import skimage.metrics
import torch
import numpy as np
from matlab_function import bgr2ycbcr
def reorder_image(img, input_order='HWC'):
"""Reorder images to 'HWC' order.
If the input_order is (h, w), return (h, w, 1);
If the input_order is (c, h, w), return (h, w, c);
If the input_order is (h, w, c), return as it is.
Args:
img (ndarray): Input image.
input_order (str): Whether the input order is 'HWC' or 'CHW'.
If the input image shape is (h, w), input_order will not have
effects. Default: 'HWC'.
Returns:
ndarray: reordered image.
"""
if input_order not in ['HWC', 'CHW']:
raise ValueError(
f'Wrong input_order {input_order}. Supported input_orders are '
"'HWC' and 'CHW'")
if len(img.shape) == 2:
img = img[..., None]
if input_order == 'CHW':
img = img.transpose(1, 2, 0)
return img
def to_y_channel(img):
"""Change to Y channel of YCbCr.
Args:
img (ndarray): Images with range [0, 255].
Returns:
(ndarray): Images with range [0, 255] (float type) without round.
"""
img = img.astype(np.float32) / 255.
if img.ndim == 3 and img.shape[2] == 3:
img = bgr2ycbcr(img, y_only=True)
img = img[..., None]
return img * 255.
def calculate_psnr(img1,
img2,
crop_border,
input_order='HWC',
test_y_channel=False):
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
Args:
img1 (ndarray/tensor): Images with range [0, 255]/[0, 1].
img2 (ndarray/tensor): Images with range [0, 255]/[0, 1].
crop_border (int): Cropped pixels in each edge of an image. These
pixels are not involved in the PSNR calculation.
input_order (str): Whether the input order is 'HWC' or 'CHW'.
Default: 'HWC'.
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
Returns:
float: psnr result.
"""
assert img1.shape == img2.shape, (
f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
if input_order not in ['HWC', 'CHW']:
raise ValueError(
f'Wrong input_order {input_order}. Supported input_orders are '
'"HWC" and "CHW"')
if type(img1) == torch.Tensor:
if len(img1.shape) == 4:
img1 = img1.squeeze(0)
img1 = img1.detach().cpu().numpy().transpose(1,2,0)
if type(img2) == torch.Tensor:
if len(img2.shape) == 4:
img2 = img2.squeeze(0)
img2 = img2.detach().cpu().numpy().transpose(1,2,0)
img1 = reorder_image(img1, input_order=input_order)
img2 = reorder_image(img2, input_order=input_order)
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
if crop_border != 0:
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
if test_y_channel:
img1 = to_y_channel(img1)
img2 = to_y_channel(img2)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
max_value = 1. if img1.max() <= 1 else 255.
return 20. * np.log10(max_value / np.sqrt(mse))
def _ssim(img1, img2):
"""Calculate SSIM (structural similarity) for one channel images.
It is called by func:`calculate_ssim`.
Args:
img1 (ndarray): Images with range [0, 255] with order 'HWC'.
img2 (ndarray): Images with range [0, 255] with order 'HWC'.
Returns:
float: ssim result.
"""
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) *
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def prepare_for_ssim(img, k):
import torch
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float()
conv = torch.nn.Conv2d(1, 1, k, stride=1, padding=k//2, padding_mode='reflect')
conv.weight.requires_grad = False
conv.weight[:, :, :, :] = 1. / (k * k)
img = conv(img)
img = img.squeeze(0).squeeze(0)
img = img[0::k, 0::k]
return img.detach().cpu().numpy()
def prepare_for_ssim_rgb(img, k):
import torch
with torch.no_grad():
img = torch.from_numpy(img).float() #HxWx3
conv = torch.nn.Conv2d(1, 1, k, stride=1, padding=k // 2, padding_mode='reflect')
conv.weight.requires_grad = False
conv.weight[:, :, :, :] = 1. / (k * k)
new_img = []
for i in range(3):
new_img.append(conv(img[:, :, i].unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)[0::k, 0::k])
return torch.stack(new_img, dim=2).detach().cpu().numpy()
def _3d_gaussian_calculator(img, conv3d):
out = conv3d(img.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
return out
def _generate_3d_gaussian_kernel():
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
kernel_3 = cv2.getGaussianKernel(11, 1.5)
kernel = torch.tensor(np.stack([window * k for k in kernel_3], axis=0))
conv3d = torch.nn.Conv3d(1, 1, (11, 11, 11), stride=1, padding=(5, 5, 5), bias=False, padding_mode='replicate')
conv3d.weight.requires_grad = False
conv3d.weight[0, 0, :, :, :] = kernel
return conv3d
def _ssim_3d(img1, img2, max_value):
assert len(img1.shape) == 3 and len(img2.shape) == 3
"""Calculate SSIM (structural similarity) for one channel images.
It is called by func:`calculate_ssim`.
Args:
img1 (ndarray): Images with range [0, 255]/[0, 1] with order 'HWC'.
img2 (ndarray): Images with range [0, 255]/[0, 1] with order 'HWC'.
Returns:
float: ssim result.
"""
C1 = (0.01 * max_value) ** 2
C2 = (0.03 * max_value) ** 2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = _generate_3d_gaussian_kernel().cuda()
img1 = torch.tensor(img1).float().cuda()
img2 = torch.tensor(img2).float().cuda()
mu1 = _3d_gaussian_calculator(img1, kernel)
mu2 = _3d_gaussian_calculator(img2, kernel)
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = _3d_gaussian_calculator(img1 ** 2, kernel) - mu1_sq
sigma2_sq = _3d_gaussian_calculator(img2 ** 2, kernel) - mu2_sq
sigma12 = _3d_gaussian_calculator(img1*img2, kernel) - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) *
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return float(ssim_map.mean())
def _ssim_cly(img1, img2):
assert len(img1.shape) == 2 and len(img2.shape) == 2
"""Calculate SSIM (structural similarity) for one channel images.
It is called by func:`calculate_ssim`.
Args:
img1 (ndarray): Images with range [0, 255] with order 'HWC'.
img2 (ndarray): Images with range [0, 255] with order 'HWC'.
Returns:
float: ssim result.
"""
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
# print(kernel)
window = np.outer(kernel, kernel.transpose())
bt = cv2.BORDER_REPLICATE
mu1 = cv2.filter2D(img1, -1, window, borderType=bt)
mu2 = cv2.filter2D(img2, -1, window,borderType=bt)
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window, borderType=bt) - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window, borderType=bt) - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window, borderType=bt) - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) *
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim(img1,
img2,
crop_border,
input_order='HWC',
test_y_channel=False):
"""Calculate SSIM (structural similarity).
Ref:
Image quality assessment: From error visibility to structural similarity
The results are the same as that of the official released MATLAB code in
https://ece.uwaterloo.ca/~z70wang/research/ssim/.
For three-channel images, SSIM is calculated for each channel and then
averaged.
Args:
img1 (ndarray): Images with range [0, 255].
img2 (ndarray): Images with range [0, 255].
crop_border (int): Cropped pixels in each edge of an image. These
pixels are not involved in the SSIM calculation.
input_order (str): Whether the input order is 'HWC' or 'CHW'.
Default: 'HWC'.
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
Returns:
float: ssim result.
"""
assert img1.shape == img2.shape, (
f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
if input_order not in ['HWC', 'CHW']:
raise ValueError(
f'Wrong input_order {input_order}. Supported input_orders are '
'"HWC" and "CHW"')
if type(img1) == torch.Tensor:
if len(img1.shape) == 4:
img1 = img1.squeeze(0)
img1 = img1.detach().cpu().numpy().transpose(1,2,0)
if type(img2) == torch.Tensor:
if len(img2.shape) == 4:
img2 = img2.squeeze(0)
img2 = img2.detach().cpu().numpy().transpose(1,2,0)
img1 = reorder_image(img1, input_order=input_order)
img2 = reorder_image(img2, input_order=input_order)
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
if crop_border != 0:
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
if test_y_channel:
img1 = to_y_channel(img1)
img2 = to_y_channel(img2)
return _ssim_cly(img1[..., 0], img2[..., 0])
ssims = []
# ssims_before = []
# skimage_before = skimage.metrics.structural_similarity(img1, img2, data_range=255., multichannel=True)
# print('.._skimage',
# skimage.metrics.structural_similarity(img1, img2, data_range=255., multichannel=True))
max_value = 1 if img1.max() <= 1 else 255
with torch.no_grad():
final_ssim = _ssim_3d(img1, img2, max_value)
ssims.append(final_ssim)
# for i in range(img1.shape[2]):
# ssims_before.append(_ssim(img1, img2))
# print('..ssim mean , new {:.4f} and before {:.4f} .... skimage before {:.4f}'.format(np.array(ssims).mean(), np.array(ssims_before).mean(), skimage_before))
# ssims.append(skimage.metrics.structural_similarity(img1[..., i], img2[..., i], multichannel=False))
return np.array(ssims).mean()