-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_features.py
237 lines (189 loc) · 8.18 KB
/
get_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#This is the code for getting the features from the tail classes
import torch
import torch.nn as nn
import pickle
import math
from torchvision import transforms
import torch.optim as optim
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader, Dataset, random_split
from torch.optim.lr_scheduler import StepLR
from general import IMBALANCECIFAR10
def adjust_batch_size(dataloader, current_batch_size):
if len(dataloader.dataset) < current_batch_size:
new_batch_size = len(dataloader.dataset)
else:
new_batch_size = current_batch_size
dataloader.batch_size = new_batch_size
class SelfAttention(nn.Module):
def __init__(self, in_channels):
super(SelfAttention, self).__init__()
self.query = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.key = nn.Conv2d(in_channels,in_channels, kernel_size=1)
self.value = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, channels, height, width = x.size()
query = self.query(x).view(batch_size, -1, height * width).permute(0, 2, 1)
key = self.key(x).view(batch_size, -1, height * width)
energy = torch.bmm(query, key)
attention = torch.softmax(energy, dim=-1)
value = self.value(x).view(batch_size, -1, height * width)
out = torch.bmm(value, attention.permute(0, 2, 1))
out = out.view(batch_size, channels, height, width)
out = self.gamma * out + x
return out
class ResNetBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet32_add_self(nn.Module):
def __init__(self, block, layers, num_classes=34):
super(ResNet32_add_self, self).__init__()
self.in_channels = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 16, layers[0], stride=1)
self.layer2 = self._make_layer(block, 32, layers[1], stride=2)
self.layer3 = self._make_layer(block, 64, layers[2], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(64 * block.expansion, num_classes)
self.self_attention = SelfAttention(64 * block.expansion)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.self_attention(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(degrees=10),
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1), scale=(0.9, 1.1)),
transforms.RandomPerspective(distortion_scale=0.2),
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()
])
# 加载 new_train_dataset
with open('new_train_dataset.pkl', 'rb') as f:
new_train_dataset = pickle.load(f)
# 加载 new_test_dataset
with open('new_test_dataset.pkl', 'rb') as f:
new_test_dataset = pickle.load(f)
# 创建 DataLoader 对象用于批量加载训练集和测试集数据
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNet32_add_self(ResNetBlock, [5, 5, 5])
# 创建 DataLoader 对象用于批量加载训练集和测试集数据
train_dataloader = DataLoader(new_train_dataset, batch_size=64, shuffle=True)
test_dataloader = DataLoader(new_test_dataset, batch_size=64, shuffle=False)
model.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
scheduler = StepLR(optimizer, step_size=10, gamma=0.1)
num_epochs = 240
# 训练模型
feature_maps_list=[]
# 训练模型
for epoch in range(num_epochs):
for i, (data, target) in enumerate(train_dataloader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
target = target.long()
loss = criterion(output, target)
loss.backward()
optimizer.step()
if i % 100 == 0:
print(
f'Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{len(train_dataloader)}], Loss: {loss.item()}')
if (epoch + 1) % 10 == 0:
model.eval()
num_classes = 4
with torch.no_grad():
total_correct = 0
total_samples = 0
class_correct = [0] * num_classes
class_total = [0] * num_classes
for batch_idx, (data, target) in enumerate(test_dataloader):
data, target = data.to('cuda'), target.to('cuda')
output = model(data)
_, predicted = output.max(1)
total_correct += predicted.eq(target).sum().item()
total_samples += target.size(0)
for i in range(num_classes):
class_correct[i] += predicted[target == i].eq(i).sum().item()
class_total[i] += target[target == i].size(0)
overall_accuracy = total_correct / total_samples
print(f'Epoch [{epoch + 1}/{num_epochs}], Overall Accuracy: {overall_accuracy:.4f}')
for i in range(num_classes):
class_accuracy = class_correct[i] / class_total[i]
print(f'Class {i} Accuracy: {class_accuracy:.4f}')
print('---')
scheduler.step()
print('Training complete.')
if (epoch + 1) % 40 == 0:
model.eval()
with torch.no_grad():
for data, _ in train_dataloader:
data = data.to(device)
out = model.conv1(data)
out = model.bn1(out)
out = model.relu(out)
out = model.maxpool(out)
out = model.layer1(out)
out = model.layer2(out)
out = model.layer3(out)
out = model.self_attention(out)
features = out # 这里使用conv1替代layer4[-1].conv2
break # 只提取第一个批次的特征图
feature_maps_list.append(features.detach().cpu())
torch.save(feature_maps_list, f'Feature_Maps_Resnet32_for_10_{epoch + 1}.pt')
print(f'Feature maps saved for ResNet32 epoch {epoch + 1}')