forked from Howuhh/faster-trajectory-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
105 lines (86 loc) · 3.57 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import torch
import argparse
import numpy as np
from tqdm.auto import trange
from omegaconf import OmegaConf
from stable_baselines3.common.vec_env import DummyVecEnv
from trajectory.models.gpt import GPT
from trajectory.utils.common import set_seed
from trajectory.utils.env import create_env, rollout, vec_rollout
def create_argparser():
parser = argparse.ArgumentParser(description="Trajectory Transformer evaluation hyperparameters. All can be set from command line.")
parser.add_argument("--config", default="configs/medium/halfcheetah_medium.yaml")
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--device", default="cpu", type=str)
return parser
def run_experiment(config, seed, device):
set_seed(seed=seed)
run_config = OmegaConf.load(os.path.join(config.checkpoints_path, "config.yaml"))
discretizer = torch.load(os.path.join(config.checkpoints_path, "discretizer.pt"), map_location=device)
model = GPT(**run_config.model)
model.eval()
model.to(device)
model.load_state_dict(torch.load(os.path.join(config.checkpoints_path, config.model_name), map_location=device))
if config.vectorized:
env = DummyVecEnv([lambda: create_env(run_config.dataset.env_name) for _ in range(config.num_episodes)])
rewards = vec_rollout(
vec_env=env,
model=model,
discretizer=discretizer,
beam_context_size=config.beam_context,
beam_width=config.beam_width,
beam_steps=config.beam_steps,
plan_every=config.plan_every,
sample_expand=config.sample_expand,
k_act=config.k_act,
k_obs=config.k_obs,
k_reward=config.k_reward,
temperature=config.temperature,
discount=config.discount,
max_steps=env.envs[0].max_episode_steps,
device=device
)
scores = [env.envs[0].get_normalized_score(r) for r in rewards]
else:
rewards, scores = [], []
env = create_env(run_config.dataset.env_name)
for i in trange(config.num_episodes, desc="Evaluation (not vectorized)"):
reward = rollout(
env=env,
model=model,
discretizer=discretizer,
beam_context_size=config.beam_context,
beam_width=config.beam_width,
beam_steps=config.beam_steps,
plan_every=config.plan_every,
sample_expand=config.sample_expand,
k_act=config.k_act,
k_obs=config.k_obs,
k_reward=config.k_reward,
temperature=config.temperature,
discount=config.discount,
max_steps=config.get("max_steps", None) or env.max_episode_steps,
render_path=os.path.join(config.render_path, str(i)),
device=device
)
rewards.append(reward)
scores.append(env.get_normalized_score(reward))
reward_mean, reward_std = np.mean(rewards), np.std(rewards)
score_mean, score_std = np.mean(scores), np.std(scores)
print(f"Evalution on {run_config.dataset.env_name}")
print(f"Mean reward: {reward_mean} ± {reward_std}")
print(f"Mean score: {score_mean} ± {score_std}")
def main():
args, override = create_argparser().parse_known_args()
config = OmegaConf.merge(
OmegaConf.load(args.config),
OmegaConf.from_cli(override)
)
run_experiment(
config=config,
seed=args.seed,
device=args.device
)
if __name__ == "__main__":
main()